Midterm Exam 1 CS 341: Foundation
Prof. Marvin K. Na
Print family (or las

undations of Computer Science II — Fall 2007, day section

Prof. Marvin K. Nakayama

Print	family	(or	last	name:	
	j	(

Print given (on first) nama.	
rımı given (or mst,) name:	

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 7 pages in total, numbered 1 to 7. Make sure your exam has all the pages.
- Note the number written on the upper right-hand corner of the first page. On the sign-up sheet being passed around, sign your name next to this number.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:
 - 1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
 - 2. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	5	Total
Points						

- 1. [20 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
 - (a) TRUE FALSE If a language A has an NFA, then A is nonregular.
 - (b) TRUE FALSE The regular expressions $(a \cup b)^*$ and $(b^*a^*)^*$ generate the same language.
 - (c) TRUE FALSE If a language A has a regular expression, then it also has a context-free grammar.
 - (d) TRUE FALSE If a language A is recognized by a PDA, then it also is recognized by a DFA.
 - (e) TRUE FALSE If a language A is recognized by a PDA, then it also is recognized by an NFA.
 - (f) TRUE FALSE The class of context-free languages is closed under intersection.
 - (g) TRUE FALSE The class of context-free languages is closed under complementation.
 - (h) TRUE FALSE If A is a language generated by a context-free grammar in Chomsky normal form, then A must be regular.
 - (i) TRUE FALSE If a language A is regular, then A^* must be regular.
 - (j) TRUE FALSE If A_1 and A_2 are regular languages, then $A_1 \circ A_2$ must be context-free.

- 2. [20 points] Give short answers to each of the following parts. Each answer should be at most three sentences. Be sure to define any notation that you use.
 - (a) What does it mean for a context-free grammar $G=(V,\Sigma,R,S)$ to be in Chomsky normal form?

(b) Give an NFA with exactly four states for the language $\{w \in \Sigma^* \mid w \text{ contains the substring } 110\}$, where $\Sigma = \{0,1\}$. You only need to draw the picture.

(c) Suppose that language A is recognized by NFA N_1 below. Note that the transitions are not drawn in N_1 . Draw a picture of an NFA for A^* .

 N_1

(d) Suppose that language A_1 has CFG $G_1 = (V_1, \Sigma, R_1, S_1)$ and language A_2 has CFG $G_2 = (V_2, \Sigma, R_2, S_2)$. Give a CFG G_3 for $A_1 \cup A_2$ in terms of G_1 and G_2 . You do not have to prove the correctness of your CFG G_3 , but do not give just an example.

3. [20 points] Let N be the following NFA with $\Sigma = \{a, b\}$, and let C = L(N).

- (a) List the strings in C in lexicographic order. If C has more than 5 strings, list only the first 5 strings in C, followed by 3 dots.
- (b) Give a DFA for C.

Scratch-work area

4. [25 points] Consider the language

$$L = \{ c^i a^j b^k \mid i, j, k \ge 0, \text{ and } i + j = k \}.$$

(a) Give a context-free grammar G for L. Be sure to specify G as a 4-tuple $G=(V,\Sigma,R,S)$.

(b) Give a PDA for L. You only need to draw the graph.

Scratch-work area

5. [15 points] Recall the pumping lemma for regular languages:

Theorem: If L is a regular language, then there exists a pumping length p where, if $s \in L$ with $|s| \ge p$, then there exists strings x, y, z such that s = xyz and

- (i) $xy^iz \in L$ for each $i \ge 0$,
- (ii) $|y| \ge 1$, and
- (iii) $|xy| \leq p$.

Consider the language $A = \{w \in \{a,b\}^* \mid w \text{ has more } a\text{'s than } b\text{'s }\}$. Specifically, for $w \in \{a,b\}^*$, let $n_a(w)$ be the number of a's in w, and let $n_b(w)$ be the number of b's in w. Then, $w \in A$ if and only if $n_a(w) > n_b(w)$. Prove that A is a nonregular language.