CS 341, Fall 2007

Solutions for Midterm 2

1. (a) True, see slide 4-54.
(b) False, see slide 4-30.
(c) False. A TM M could also loop on w.
(d) False. The language $A=\left\{0^{n} 1^{n} 2^{n} \mid n \geq 0\right\}$ is decidable but not context-free.
(e) True. Homework 8, problem 2.
(f) False. For example, if A recognizes Σ^{*} and B recognizes \emptyset, then $\overline{L(A)} \cap L(B)=$ \emptyset, but A and B are not equivalent. DFAs A and B are equivalent if and only if $[L(A) \cap \overline{L(B)}] \cup[\overline{L(A)} \cap L(B)]=\emptyset$.
(g) False, since $\overline{A_{\mathrm{TM}}}$ is not Turing-recognizable by Corollary 4.23.
(h) True, by Theorem 4.4.
(i) True, see slide 4-38.
(j) False, by Theorems 3.16 and 3.13.
2. (a) A language L_{1} that is Turing-recognizable has a Turing machine M_{1} that may loop forever on a string $w \notin L_{1}$. A language L_{2} that is Turing-decidable has a Turing machine M_{2} that always halts.
(b) The informal notion of an algorithm corresponds exactly to a Turing machine that always halts.
(c) If $x, y \in A$ with $x \neq y$, then $f(x) \neq f(y)$. Equivalently, if $f(x)=f(y)$, then $x=y$.
(d) For all $y \in B$, there exists $x \in A$ such that $f(x)=y$.
3. This is basically Homework 7 , problem 1.
(a) $q_{1} 00 \quad \sqcup q_{2} 0 \quad \sqcup x q_{3} \sqcup \quad \sqcup q_{5} x \quad q_{5} \sqcup x \quad \sqcup q_{2} x \quad \sqcup x q_{2} \sqcup \quad \sqcup x \sqcup q_{\text {accept }}$
(b) $q_{1} 000 \quad \sqcup q_{2} 00 \quad \sqcup x q_{3} 0 \quad \sqcup x 0 q_{4} \sqcup \quad \sqcup x 0 \sqcup q_{\text {reject }}$
4. Theorem 4.17.
5. This problem is a slight variation of Homework 8, problem 1. The equivalence problem for regular expressions can be expressed as the language

$$
E Q_{\mathrm{REX}}=\left\{\left\langle R_{1}, R_{2}\right\rangle \mid R_{1} \text { and } R_{2} \text { are regular expressions with } L\left(R_{1}\right)=L\left(R_{2}\right)\right\} .
$$

The language $E Q_{\text {DFA }}$ is decidable by Theorem 4.5, and let M be a TM that decides $E Q_{\text {DFA }}$. The following TM S decides $E Q_{\text {REX }}$:
$S=$ "On input $\left\langle R_{1}, R_{2}\right\rangle$, where R_{1}, R_{2} are regular expressions:

1. Check if $\left\langle R_{1}, R_{2}\right\rangle$ is a proper encoding. If not, reject.
2. Convert R_{1} and R_{2} into equivalent DFAs D_{1} and D_{2} by first using the algorithm in Kleene's theorem for converting a regular expression into an equivalent NFA (Lemma 1.55), and then converting the NFA into an equivalent DFA (Theorem 1.39).
3. Run TM M on input $\left\langle D_{1}, D_{2}\right\rangle$, where M is the TM that decides $E Q_{\text {DFA }}$
4. If M accepts, accept. If M rejects, reject.
5. See Theorem 5.4.
