CS 341, Fall 2007 Solutions for Midterm 2

- 1. (a) True, see slide 4-54.
 - (b) False, see slide 4-30.
 - (c) False. A TM M could also loop on w.
 - (d) False. The language $A = \{0^n 1^n 2^n \mid n \ge 0\}$ is decidable but not context-free.
 - (e) True. Homework 8, problem 2.
 - (f) False. For example, if A recognizes Σ^* and B recognizes \emptyset , then $L(A) \cap L(B) = \emptyset$, but A and B are not equivalent. DFAs A and B are equivalent if and only if $[L(A) \cap \overline{L(B)}] \cup [\overline{L(A)} \cap L(B)] = \emptyset$.
 - (g) False, since $\overline{A_{\text{TM}}}$ is not Turing-recognizable by Corollary 4.23.
 - (h) True, by Theorem 4.4.
 - (i) True, see slide 4-38.
 - (j) False, by Theorems 3.16 and 3.13.
- 2. (a) A language L_1 that is Turing-recognizable has a Turing machine M_1 that may loop forever on a string $w \notin L_1$. A language L_2 that is Turing-decidable has a Turing machine M_2 that always halts.
 - (b) The informal notion of an algorithm corresponds exactly to a Turing machine that always halts.
 - (c) If $x, y \in A$ with $x \neq y$, then $f(x) \neq f(y)$. Equivalently, if f(x) = f(y), then x = y.
 - (d) For all $y \in B$, there exists $x \in A$ such that f(x) = y.
- 3. This is basically Homework 7, problem 1.
 - (a) $q_100 \qquad \Box q_20 \qquad \Box xq_3 \Box \qquad \Box q_5x \qquad q_5 \Box x \qquad \Box q_2x \qquad \Box xq_2 \Box \qquad \Box x \Box q_{accept}$
 - (b) $q_1000 \qquad \Box q_200 \qquad \Box xq_30 \qquad \Box x0q_4 \sqcup \qquad \Box x0 \Box q_{\text{reject}}$
- 4. Theorem 4.17.
- 5. This problem is a slight variation of Homework 8, problem 1. The equivalence problem for regular expressions can be expressed as the language

 $EQ_{\text{REX}} = \{ \langle R_1, R_2 \rangle \mid R_1 \text{ and } R_2 \text{ are regular expressions with } L(R_1) = L(R_2) \}.$

The language EQ_{DFA} is decidable by Theorem 4.5, and let M be a TM that decides EQ_{DFA} . The following TM S decides EQ_{REX} :

- S = "On input $\langle R_1, R_2 \rangle$, where R_1, R_2 are regular expressions:
 - **1.** Check if $\langle R_1, R_2 \rangle$ is a proper encoding. If not, *reject*.
 - 2. Convert R_1 and R_2 into equivalent DFAs D_1 and D_2 by first using the algorithm in Kleene's theorem for converting a regular expression into an equivalent NFA (Lemma 1.55), and then converting the NFA into an equivalent DFA (Theorem 1.39).
 - **3.** Run TM M on input $\langle D_1, D_2 \rangle$, where M is the TM that decides EQ_{DFA}
 - **4.** If *M* accepts, *accept*. If *M* rejects, *reject*.
- 6. See Theorem 5.4.