Midterm Exam 2
CS 341: Foundations of Computer Science II - Fall 2007, day section
Prof. Marvin K. Nakayama

Print family (or last) name: \qquad

Print given (or first) name: \qquad

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date:

- This exam has 7 pages in total, numbered 1 to 7 . Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
2. DFA stands for deterministic finite automaton; NFA stands for nondeterministic finite automaton; CFG stands for context-free grammar; PDA stands for pushdown automaton.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step. Unless you are specifically asked to prove a theorem from the book, you may assume that the theorems in the textbook hold; i.e., you do not have to reprove the theorems in the textbook. When using a theorem from the textbook, make sure you provide enough detail so that it is clear which result you are using; e.g., say something like, "By the theorem that states $S^{* *}=S^{*}$, it follows that \ldots "

Problem	1	2	3	4	5	6	Total
Points							

1. [20 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - If A is a regular language, then A is Turing-recognizable.
(b) TRUE FALSE - It is impossible to define a correspondence between $\mathcal{N}=$ $\{1,2,3, \ldots\}$ and $\mathcal{E}=\{2,4,6, \ldots\}$.
(c) TRUE FALSE - For any Turing machine $M=\left(Q, \Sigma, \Gamma, \delta, q_{1}, q_{\mathrm{accept}}, q_{\mathrm{reject}}\right)$ and string $w \in \Sigma^{*}, M$ will either accept or reject w.
(d) TRUE FALSE - Every Turing-decidable language is also context-free.
(e) TRUE FALSE - There is a Turing machine that decides if an arbitrary CFG generates ε.
(f) TRUE FALSE - DFAs A and B are equivalent if and only if $\overline{L(A)} \cap L(B)=\emptyset$.
(g) TRUE FALSE - The universal Turing machine U recognizes $\overline{A_{\mathrm{TM}}}$, where $A_{\mathrm{TM}}=$ $\{\langle M, w\rangle \mid M$ is a TM that accepts string $w\}$.
(h) TRUE FALSE - The language $E_{\mathrm{DFA}}=\{\langle D\rangle \mid D$ is a DFA with $L(D)=\emptyset\}$ is Turing-decidable.
(i) TRUE FALSE - For any alphabet Σ, Σ^{*} is countable.
(j) TRUE FALSE - There are some languages recognized by a 6 -tape, nondeterministic Turing machine that cannot be recognized by a 1-tape, deterministic Turing machine.
2. [20 points] Give a short answer (at most three sentences) for each part below. Be sure to define any notation that you use.
(a) What is the difference between a Turing-recognizable language and a Turing-decidable language?
(b) What does the Church-Turing Thesis say?
(c) What does it mean for a function $f: A \rightarrow B$ to be one-to-one?
(d) What does it mean for a function $f: A \rightarrow B$ to be onto?
3. [20 points] The Turing machine M below recognizes the language $A=\left\{0^{2^{n}} \mid n \geq 0\right\}$.

In each of the parts below, give the sequence of configurations that M enters when started on the indicated input string.
(a) 00
(b) 000

Scratch-work area

Each of the following problems requires you to prove a result. In your proofs, you can apply any theorems that we went over in class without proving them, except for the result you are asked to prove in the problem. When citing a theorem, make sure that you give enough details so that it is clear what theorem you are using (e.g., say something like, "By the theorem that says every context-free language has a CFG in Chomsky normal form, we can show that")
4. [10 points] Let \mathcal{R} be the set of all real numbers. Show that \mathcal{R} is uncountable.
5. [15 points] Consider the problem of determining whether two regular expressions are equivalent. Express this problem as a language and show that it is decidable.
6. [15 points] Recall that

$$
\begin{aligned}
E_{\mathrm{TM}} & =\{\langle M\rangle \mid M \text { is a Turing machine with } L(M)=\emptyset\}, \\
E Q_{\mathrm{TM}} & =\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1} \text { and } M_{2} \text { are Turing machines with } L\left(M_{1}\right)=L\left(M_{2}\right)\right\} .
\end{aligned}
$$

Prove that $E Q_{\mathrm{TM}}$ is undecidable by showing that E_{TM} reduces to $E Q_{\mathrm{TM}}$. You may assume that E_{TM} is undecidable.

