Midterm	Exam	2
00 011		

CS 341: Foundations of Computer Science II — Fall 2007, day section

Prof. Marvin K. Nakayama

Print family (or last) name:	
Print given (or first) name:	
I have read and understand all of the instructions below, and I will obey the Academic	Honor Code.
Signature and Date:	

- This exam has 7 pages in total, numbered 1 to 7. Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:
 - 1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
 - 2. DFA stands for deterministic finite automaton; NFA stands for nondeterministic finite automaton; CFG stands for context-free grammar; PDA stands for pushdown automaton.
 - 3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step. Unless you are specifically asked to prove a theorem from the book, you may assume that the theorems in the textbook hold; i.e., you do not have to reprove the theorems in the textbook. When using a theorem from the textbook, make sure you provide enough detail so that it is clear which result you are using; e.g., say something like, "By the theorem that states $S^{**} = S^*$, it follows that ..."

Problem	1	2	3	4	5	6	Total
Points							

- 1. [20 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
 - (a) TRUE FALSE If A is a regular language, then A is Turing-recognizable.
 - (b) TRUE FALSE It is impossible to define a correspondence between $\mathcal{N} = \{1, 2, 3, \ldots\}$ and $\mathcal{E} = \{2, 4, 6, \ldots\}$.
 - (c) TRUE FALSE For any Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_1, q_{\text{accept}}, q_{\text{reject}})$ and string $w \in \Sigma^*$, M will either accept or reject w.
 - (d) TRUE FALSE Every Turing-decidable language is also context-free.
 - (e) TRUE FALSE There is a Turing machine that decides if an arbitrary CFG generates ε .
 - (f) TRUE FALSE DFAs A and B are equivalent if and only if $\overline{L(A)} \cap L(B) = \emptyset$.
 - (g) TRUE FALSE The universal Turing machine U recognizes \overline{A}_{TM} , where $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts string } w \}$.
 - (h) TRUE FALSE The language $E_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a DFA with } L(D) = \emptyset \}$ is Turing-decidable.
 - (i) TRUE FALSE For any alphabet Σ , Σ^* is countable.
 - (j) TRUE FALSE There are some languages recognized by a 6-tape, nondeterministic Turing machine that cannot be recognized by a 1-tape, deterministic Turing machine.

2.	[20 points]	Give a short answer	(at most	three se	entences)	for each	part	below.	Be sure	e to
	define any not	tation that you use.								

(a) What is the difference between a Turing-recognizable language and a Turing-decidable language?

(b) What does the Church-Turing Thesis say?

(c) What does it mean for a function $f: A \to B$ to be one-to-one?

(d) What does it mean for a function $f:A\to B$ to be onto?

3. [20 points] The Turing machine M below recognizes the language $A = \{0^{2^n} \mid n \geq 0\}$.

In each of the parts below, give the sequence of configurations that M enters when started on the indicated input string.

(a) 00

(b) 000

Scratch-work area

Each of the following problems requires you to prove a result. In your proofs, you can apply any theorems that we went over in class without proving them, except for the result you are asked to prove in the problem. When citing a theorem, make sure that you give enough details so that it is clear what theorem you are using (e.g., say something like, "By the theorem that says every context-free language has a CFG in Chomsky normal form, we can show that")

4. [10 points] Let \mathcal{R} be the set of all real numbers. Show that \mathcal{R} is uncountable.

5.	[15 points] equivalent.	Consider the problem of determining whether two regular expressions are Express this problem as a language and show that it is decidable.

6. [15 points] Recall that

```
\begin{array}{rcl} E_{\mathrm{TM}} &=& \{\; \langle M \rangle \; | \; M \; \text{is a Turing machine with} \; L(M) = \emptyset \; \}, \\ EQ_{\mathrm{TM}} &=& \{\; \langle M_1, M_2 \rangle \; | \; M_1 \; \text{and} \; M_2 \; \text{are Turing machines with} \; L(M_1) = L(M_2) \; \}. \end{array}
```

Prove that EQ_{TM} is undecidable by showing that E_{TM} reduces to EQ_{TM} . You may assume that E_{TM} is undecidable.