CS 341, Fall 2008
 Solutions for Midterm, eLearning Section

1. (a) True. If A is recognized by an NFA, then A is regular by Corollary 1.40. But Corollary 2.32 then implies that A is also context-free.
(b) True. Homework 4, problem 5a.
(c) True. Homework 4, problem 5b.
(d) True. Theorem 2.20.
(e) True. Suppose that A is finite. Then slide 1-81 shows that A is regular, so A cannot be nonregular.
(f) False. The language $A=\{0,1\}^{*}$, which is infinite, has regular expression $(0 \cup 1)^{*}$. Thus, Theorem 1.54 implies A is regular.
(g) False. The regular expression $0^{*} 1^{*}$ generates the string $001 \notin\left\{0^{n} 1^{n} \mid n \geq 0\right\}$, so it cannot be a correct regular expression for the language. In fact, the language is not regular (slide 1-90), so it cannot have a regular expression by Theorem 1.54.
(h) True. The language \emptyset is finite, so slide $1-81$ shows that it is regular. Corollary 2.32 then implies that \emptyset is also context-free.
(i) True. Homework 2, problem 3.
(j) True. Homework 5, problem 3b.
2. (a) The set D is closed under f means that $x \in D$ implies $f(x) \in D$.
(b) For a CFG $G=(V, \Sigma, R, S)$ to be in Chomsky normal form, each of its rules must have one of three forms: $A \rightarrow B C, A \rightarrow x$, or $S \rightarrow \varepsilon$, where A, B, C are variables, B and C are not the start variable, x is a terminal, and S is the start variable.
3. (a) Regular expression: $(+\cup-\cup \varepsilon)\left(\Sigma_{1} \Sigma_{1}^{*} . \Sigma_{1}^{*} \cup . \Sigma_{1} \Sigma_{1}^{*}\right)$
(b) DFA:

All transitions not specified go to state 6 .
4. Homework 6, problem 2a.

5. DFA

6. (a) $G=(V, \Sigma, R, S)$, where $V=\{S\}, \Sigma=\{a, b\}$, and the rules are $S \rightarrow a S a|b S b| a \mid b$.
(b) PDA

7. Suppose that $A=\left\{c^{2 n} a^{n} b^{2 n} \mid n \geq 0\right\}$ is a regular language. Let p be the pumping length, and consider the string $s=c^{2 p} a^{p} b^{2 p} \in A$. Note that $|s|=5 p \geq p$, so the pumping lemma implies we can write $s=x y z$ with $x y^{i} z \in A$ for all $i \geq 0,|y|>0$, and $|x y| \leq p$. Now, $|x y| \leq p$ implies that x and y have only c 's (together up to p in total) and z has the rest of the c 's, followed by $a^{p} b^{2 p}$. Hence, we can write $x=c^{j}$ for some $j \geq 0, y=c^{k}$ for some $k \geq 0$, and $z=c^{\ell} a^{p} b^{2 p}$, where $j+k+\ell=2 p$ since $x y z=s=c^{2 p} a^{p} b^{2 p}$. Also, $|y|>0$ implies $k>0$. Now consider the string $x y y z=c^{j} c^{k} c^{k} c^{\ell} a^{p} b^{2 p}=c^{2 p+k} a^{p} b^{2 p}$ since $j+k+\ell=2 p$. Note that $x y y z \notin A$ since $k>0$, which contradicts (i), so A is not a regular language.

