CS 341, Fall 2008 Solutions for Midterm, eLearning Section

- 1. (a) True. If A is recognized by an NFA, then A is regular by Corollary 1.40. But Corollary 2.32 then implies that A is also context-free.
 - (b) True. Homework 4, problem 5a.
 - (c) True. Homework 4, problem 5b.
 - (d) True. Theorem 2.20.
 - (e) True. Suppose that A is finite. Then slide 1-81 shows that A is regular, so A cannot be nonregular.
 - (f) False. The language $A = \{0, 1\}^*$, which is infinite, has regular expression $(0 \cup 1)^*$. Thus, Theorem 1.54 implies A is regular.
 - (g) False. The regular expression 0^*1^* generates the string $001 \notin \{0^n1^n \mid n \ge 0\}$, so it cannot be a correct regular expression for the language. In fact, the language is not regular (slide 1-90), so it cannot have a regular expression by Theorem 1.54.
 - (h) True. The language \emptyset is finite, so slide 1-81 shows that it is regular. Corollary 2.32 then implies that \emptyset is also context-free.
 - (i) True. Homework 2, problem 3.
 - (j) True. Homework 5, problem 3b.
- 2. (a) The set D is closed under f means that $x \in D$ implies $f(x) \in D$.
 - (b) For a CFG $G = (V, \Sigma, R, S)$ to be in Chomsky normal form, each of its rules must have one of three forms: $A \to BC$, $A \to x$, or $S \to \varepsilon$, where A, B, C are variables, B and C are not the start variable, x is a terminal, and S is the start variable.
- 3. (a) Regular expression: $(+ \cup \cup \varepsilon)(\Sigma_1 \Sigma_1^*, \Sigma_1^* \cup .\Sigma_1 \Sigma_1^*)$
 - (b) DFA:

All transitions not specified go to state 6.

4. Homework 6, problem 2a.

5. DFA

6. (a) $G = (V, \Sigma, R, S)$, where $V = \{S\}$, $\Sigma = \{a, b\}$, and the rules are $S \to aSa \mid bSb \mid a \mid b$. (b) PDA

7. Suppose that $A = \{c^{2n}a^nb^{2n} \mid n \ge 0\}$ is a regular language. Let p be the pumping length, and consider the string $s = c^{2p}a^pb^{2p} \in A$. Note that $|s| = 5p \ge p$, so the pumping lemma implies we can write s = xyz with $xy^iz \in A$ for all $i \ge 0, |y| > 0$, and $|xy| \le p$. Now, $|xy| \le p$ implies that x and y have only c's (together up to p in total) and z has the rest of the c's, followed by a^pb^{2p} . Hence, we can write $x = c^j$ for some $j \ge 0, y = c^k$ for some $k \ge 0$, and $z = c^{\ell}a^pb^{2p}$, where $j + k + \ell = 2p$ since $xyz = s = c^{2p}a^pb^{2p}$. Also, |y| > 0 implies k > 0. Now consider the string $xyyz = c^jc^kc^kc^\ell a^pb^{2p} = c^{2p+k}a^pb^{2p}$ since $j + k + \ell = 2p$. Note that $xyyz \notin A$ since k > 0, which contradicts (i), so A is not a regular language.