CS 341, Spring 2008 Solutions for Midterm 1

- 1. (a) False. If a language is nonregular, it cannot have an NFA by Corollary 1.40.
 - (b) False. The language is non-regular, as shown on slide 1-90. Therefore, it cannot have a regular expression. The problem with the expression given is that it goes on forever, but regular expressions can't do that.
 - (c) False. The language a^* is regular but infinite.
 - (d) True. If A has a DFA, then it is regular. But every regular language is also context-free by Corollary 2.32. Therefore, A must have a PDA by Theorem 2.20.
 - (e) False. The language $A = \{0^n 1^n 2^n \mid n \ge 0\}$ is non-context-free, so it cannot have a PDA by Theorem 2.20.
 - (f) False. Homework 6, problem 2(a).
 - (g) True. Homework 5, problem 3(b).
 - (h) True. Kleene's Theorem.
 - (i) True, Homework 2, problem 3.
 - (j) True. Slide 1-10 gives a DFA for \emptyset , so it is regular.
- 2. (a) Here is an NFA with exactly 4 states:

(b) CFG $G = (V, \Sigma, R, S)$ is Chomsky normal form means that each rule in R has one of 3 forms:

$$\begin{array}{rccc} A & \to & BC \\ A & \to & x \\ S & \to & \varepsilon \end{array}$$

where $A \in V$; $B, C \in V - \{S\}$; $x \in \Sigma$, and S is the start variable.

- (c) See page 1-50 of notes.
- (d) Homework 5, problem 3(c).
- 3. (a) a, b, aa, ba, bb, \ldots
 - (b) A regular expression for C is $(a \cup ba^*(b \cup \varepsilon))(aa \cup aba^*(b \cup \varepsilon))^*(\varepsilon \cup a)$. There are infinitely many correct regular expressions for C.

4. (a) $G = (V, \Sigma, R, S)$ with set of variables $V = \{S, U, T, X, Y, Z\}$, where S is the start variable; set of terminals $\Sigma = \{a, b, c\}$; and rules

(b)

- 5. We prove this by contradiction. Suppose that A is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string $s = ({}^{p}0)^{p}$, which is p left parentheses, followed by 0, followed by p right parentheses. Note that $s \in A$ since we can derive it as follows: $S \Rightarrow (S) \Rightarrow ((S)) \Rightarrow \cdots \Rightarrow ({}^{p}S)^{p} \Rightarrow ({}^{p}0)^{p}$. Also, |s| = 2p + 1 > p, so the Pumping Lemma will hold. Thus, there exists strings x, y, and z such that s = xyz and
 - (a) $xy^i z \in A$ for each $i \ge 0$,
 - (b) |y| > 0,
 - (c) $|xy| \le p$.

Since the first p symbols of s are all ('s, the third property implies that x and y consist only of ('s. So z will be the rest of the ('s, followed by 0 and all p)'s. The second property states that |y| > 0, so y has at least one (. More precisely, we can then say that

$$x = (j \text{ for some } j \ge 0,$$

$$y = (k \text{ for some } k \ge 1,$$

$$z = (m0)p \text{ for some } m \ge 0.$$

Since ${}^{(p}0)^p = s = xyz = {}^{(j}({}^k({}^m0)^p = {}^{(j+k+m}0)^p$, we must have that j+k+m=p. The first property implies that $xy^2z \in A$, but

$$xy^2z = ({}^{j}({}^{k}({}^{k}({}^{m}0){}^{p})$$

= $({}^{p+k}0)^{p}$

since j + k + m = p. Hence, $xy^2z \notin A$ because the parentheses don't balance since $k \ge 1$, and we get a contradiction. Therefore, A is a nonregular language.