CS 341, Spring 2008
 Solutions for Midterm 1

1. (a) False. If a language is nonregular, it cannot have an NFA by Corollary 1.40.
(b) False. The language is non-regular, as shown on slide 1-90. Therefore, it cannot have a regular expression. The problem with the expression given is that it goes on forever, but regular expressions can't do that.
(c) False. The language a^{*} is regular but infinite.
(d) True. If A has a DFA, then it is regular. But every regular language is also context-free by Corollary 2.32. Therefore, A must have a PDA by Theorem 2.20.
(e) False. The language $A=\left\{0^{n} 1^{n} 2^{n} \mid n \geq 0\right\}$ is non-context-free, so it cannot have a PDA by Theorem 2.20.
(f) False. Homework 6, problem 2(a).
(g) True. Homework 5, problem 3(b).
(h) True. Kleene's Theorem.
(i) True, Homework 2, problem 3.
(j) True. Slide 1-10 gives a DFA for \emptyset, so it is regular.
2. (a) Here is an NFA with exactly 4 states:

(b) CFG $G=(V, \Sigma, R, S)$ is Chomsky normal form means that each rule in R has one of 3 forms:

$$
\begin{aligned}
A & \rightarrow B C \\
A & \rightarrow x \\
S & \rightarrow \varepsilon
\end{aligned}
$$

where $A \in V ; B, C \in V-\{S\} ; x \in \Sigma$, and S is the start variable.
(c) See page 1-50 of notes.
(d) Homework 5, problem 3(c).
3. (a) $a, b, a a, b a, b b, \ldots$
(b) A regular expression for C is $\left(a \cup b a^{*}(b \cup \varepsilon)\right)\left(a a \cup a b a^{*}(b \cup \varepsilon)\right)^{*}(\varepsilon \cup a)$. There are infinitely many correct regular expressions for C.
4. (a) $G=(V, \Sigma, R, S)$ with set of variables $V=\{S, U, T, X, Y, Z\}$, where S is the start variable; set of terminals $\Sigma=\{a, b, c\}$; and rules

$$
\begin{aligned}
S & \rightarrow X \mid Y \\
X & \rightarrow U T \\
U & \rightarrow c U a \mid \varepsilon \\
T & \rightarrow b T \mid \varepsilon \\
Y & \rightarrow c Y b \mid Z \\
Z & \rightarrow a Z \mid \varepsilon
\end{aligned}
$$

(b)

5. We prove this by contradiction. Suppose that A is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string $s=\left({ }^{p} 0\right)^{p}$, which is p left parentheses, followed by 0 , followed by p right parentheses. Note that $s \in A$ since we can derive it as follows: $S \Rightarrow(S) \Rightarrow((S)) \Rightarrow \cdots \Rightarrow\left({ }^{p} S\right)^{p} \Rightarrow\left({ }^{p} 0\right)^{p}$. Also, $|s|=2 p+1>p$, so the Pumping Lemma will hold. Thus, there exists strings x, y, and z such that $s=x y z$ and
(a) $x y^{i} z \in A$ for each $i \geq 0$,
(b) $|y|>0$,
(c) $|x y| \leq p$.

Since the first p symbols of s are all ('s, the third property implies that x and y consist only of ('s. So z will be the rest of the ('s, followed by 0 and all p)'s. The second property states that $|y|>0$, so y has at least one (. More precisely, we can then say that

$$
\begin{aligned}
& x=\left({ }^{j} \text { for some } j \geq 0\right. \\
& y=\left({ }^{k} \text { for some } k \geq 1\right. \\
& z=\left({ }^{m} 0\right)^{p} \text { for some } m \geq 0 .
\end{aligned}
$$

Since $\left({ }^{p} 0\right)^{p}=s=x y z=\left({ }^{j}\left({ }^{k}\left({ }^{m} 0\right)^{p}=\left({ }^{j+k+m} 0\right)^{p}\right.\right.$, we must have that $j+k+m=p$. The first property implies that $x y^{2} z \in A$, but

$$
\begin{aligned}
x y^{2} z & =\left({ } ^ { j } \left({ } ^ { k } \left({ }^{k}\left({ }^{m} 0\right)^{p}\right.\right.\right. \\
& =\left({ }^{p+k} 0\right)^{p}
\end{aligned}
$$

since $j+k+m=p$. Hence, $x y^{2} z \notin A$ because the parentheses don't balance since $k \geq 1$, and we get a contradiction. Therefore, A is a nonregular language.

