CS 341, Spring 2008

Solutions for Midterm 2

1. (a) True, by Theorem 4.9.
(b) True, by Theorem 4.9.
(c) False, e.g., $\overline{A_{\mathrm{TM}}}$ is not Turing-recognizable.
(d) False. A TM M may loop on input w.
(e) True. List the strings in lexicographic order.
(f) False. Homework 9, problem 1.
(g) True, by Theorems 3.13 and 3.16.
(h) False, by Theorem 5.4.
(i) True, by Theorem 4.5.
(j) False, by Corollary 4.23.
2. (a) Function f is one-to-one means that if $x \neq y$, then $f(x) \neq f(y)$.
(b) A language L_{1} that is Turing-recognizable has a Turing machine M_{1} that may loop forever on a string $w \notin L_{1}$. A language L_{2} that is Turing-decidable has a Turing machine M_{2} that always halts.
3. (a) $q_{1} a a \quad \sqcup q_{2} a \quad \sqcup x q_{3} \sqcup \quad \sqcup q_{5} x \quad q_{5} \sqcup x \quad \sqcup q_{2} x \quad \sqcup x q_{2} \sqcup \quad \sqcup x \sqcup q_{\text {accept }}$
(b) $\begin{array}{cc}q_{1} a a a a a a & \sqcup q_{2} a a a a \\ \sqcup x a x q_{3} a & \sqcup x a x a q_{4}\end{array} \quad \sqcup x q_{3} a a a \quad \sqcup x a q_{4} a a$
$\sqcup x a \sqcup q_{\mathrm{reject}}$
4. See slides 4-39 and 4-40.
5. Define the language as

$$
C=\{\langle M, N\rangle \mid M \text { and } N \text { are NFAs with } L(M)=L(N)\} .
$$

Recall that the proof of Theorem 4.5 defines a Turing machine F that decides the language $E Q_{\mathrm{DFA}}=\{\langle A, B\rangle \mid A$ and B are DFAs and $L(A)=L(B)\}$. Then the following Turing machine T decides C :

$$
T=\text { "On input }\langle M, N\rangle \text {, where } M \text { and } N \text { are DFAs: }
$$

1. Convert M and N into equivalent DFAs D_{1} and D_{2} using the algorithm in the proof of Kleene's Theorem.
2. Run TM F from Theorem 4.5 on input $\left\langle D_{1}, D_{2}\right\rangle$.
3. If F accepts, accept. If F rejects, reject."
4. This is Theorem 5.1, whose proof is given on slide 5-8.
