CS 341, Spring 2008 Solutions for Midterm 2

- 1. (a) True, by Theorem 4.9.
 - (b) True, by Theorem 4.9.
 - (c) False, e.g., $\overline{A_{\rm TM}}$ is not Turing-recognizable.
 - (d) False. A TM M may loop on input w.
 - (e) True. List the strings in lexicographic order.
 - (f) False. Homework 9, problem 1.
 - (g) True, by Theorems 3.13 and 3.16.
 - (h) False, by Theorem 5.4.
 - (i) True, by Theorem 4.5.
 - (j) False, by Corollary 4.23.
- 2. (a) Function f is one-to-one means that if $x \neq y$, then $f(x) \neq f(y)$.
 - (b) A language L_1 that is Turing-recognizable has a Turing machine M_1 that may loop forever on a string $w \notin L_1$. A language L_2 that is Turing-decidable has a Turing machine M_2 that always halts.
- 3. (a) q_1aa $\Box q_2a$ $\Box xq_3 \Box$ $\Box q_5x$ $q_5 \Box x$ $\Box q_2x$ $\Box xq_2 \Box$ $\Box x \Box q_{accept}$

(b)	q_1aaaaa	$\Box q_2 aaaa$	$\Box xq_3aaa$	$\Box xaq_4aa$
	$\Box xaxq_3a \Box xaxaq_4$		$\sqcup xaxa \sqcup q_{reject}$	

- 4. See slides 4-39 and 4-40.
- 5. Define the language as

 $C = \{ \langle M, N \rangle \mid M \text{ and } N \text{ are NFAs with } L(M) = L(N) \}.$

Recall that the proof of Theorem 4.5 defines a Turing machine F that decides the language $EQ_{\text{DFA}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$. Then the following Turing machine T decides C:

- T = "On input $\langle M, N \rangle$, where M and N are DFAs:
 - 1. Convert M and N into equivalent DFAs D_1 and D_2 using the algorithm in the proof of Kleene's Theorem.
 - **2.** Run TM F from Theorem 4.5 on input $\langle D_1, D_2 \rangle$.
 - **3.** If *F* accepts, *accept*. If *F* rejects, *reject*."
- 6. This is Theorem 5.1, whose proof is given on slide 5-8.