Midterm Exam 2 CS 341: Foundations of Computer Science II — **Spring 2008, day section** Prof. Marvin K. Nakayama

Print family (or last) name:

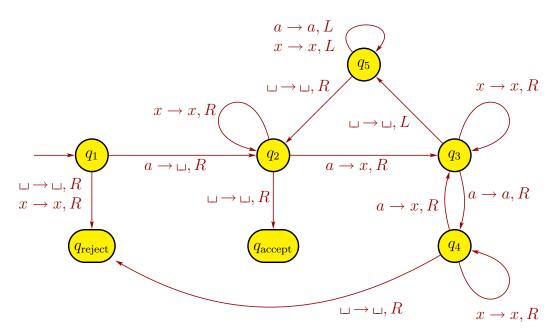
Print given (or first) name:

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date: _____

- This exam has 7 pages in total, numbered 1 to 7. Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:
 - 1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
 - 2. DFA stands for deterministic finite automaton; NFA stands for nondeterministic finite automaton; CFG stands for context-free grammar; PDA stands for pushdown automaton.
 - 3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step. Unless you are specifically asked to prove a theorem from the book, you may assume that the theorems in the textbook hold; i.e., you do not have to reprove the theorems in the textbook. When using a theorem from the textbook, make sure you provide enough detail so that it is clear which result you are using; e.g., say something like, "By the theorem that states $S^{**} = S^*$, it follows that ..."

Problem	1	2	3	4	5	6	Total
Points							


1. **[20 points]** For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE

(a)	TRUE	FALSE	 If A is context-free, then A is Turing-recognizable.
(b)	TRUE	FALSE	 If A is context-free, then A is Turing-decidable.
(c)	TRUE	FALSE	 Every language is Turing-recognizable.
(d)	TRUE	FALSE	 For a Turing machine M and a string w , M either accepts or rejects w .
(e)	TRUE	FALSE	 The language $(0 \cup 1)^*$ is countable.
(f)	TRUE	FALSE	 The set \mathcal{B} of infinite binary sequences is countable.
(g)	TRUE	FALSE	 If language A is recognized by a 14-tape nondeterministic Tur- ing machine, then there is a single-tape deterministic Turing machine that also recognizes A .
(h)	TRUE	FALSE	 The language $EQ_{\rm TM}$ is decidable, where
			$EQ_{\mathrm{TM}} = \{ \langle M, N \rangle \mid M \text{ and } N \text{ are TMs with } L(M) = L(N) \}.$
(i)	TRUE	FALSE	 The language EQ_{DFA} is decidable, where
			$EQ_{\text{DFA}} = \{ \langle C, D \rangle \mid C \text{ and } D \text{ are DFAs with } L(C) = L(D) \}.$
(j)	TRUE	FALSE	 The language $\overline{A_{\text{TM}}}$ is decidable, where
			$A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}.$

- 2. **[15 points]** Give a short answer (at most three sentences) for each part below. Be sure to define any notation that you use.
 - (a) What does it mean for a function $f: A \to B$ to be one-to-one?

(b) Explain the difference between Turing-recognizable and Turing-decidable.

3. [20 points] The Turing machine M below recognizes the language $A = \{ a^{2^n} \mid n \ge 0 \}.$

In each of the parts below, give the sequence of configurations that M enters when started on the indicated input string.

(a) *aa*

(b) aaaaa

Scratch-work area

Each of the following problems requires you to prove a result. In your proofs, you can apply any theorems that we went over in class without proving them, except for the result you are asked to prove in the problem. When citing a theorem, make sure that you give enough details so that it is clear what theorem you are using (e.g., say something like, "By the theorem that says every context-free language has a CFG in Chomsky normal form, we can show that")

4. [15 points] Let \mathcal{L} be the set of all languages having alphabet $\Sigma = \{0, 1\}$. Show that \mathcal{L} is uncountable.

5. **[15 points]** Consider the decision problem of testing whether two NFAs are equivalent. Express this problem as a language and show that it is decidable.

6. **[15 points]** Recall that

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a Turing machine that halts on input } w \}.$

Prove that $HALT_{\rm TM}$ is undecidable by showing that $A_{\rm TM}$ reduces to $HALT_{\rm TM}$, where

 $A_{\rm TM} = \{ \langle M, w \rangle \mid M \text{ is a Turing machine that accepts input } w \}.$