CS 341, Fall 2009
 Solutions for Midterm, eLearning Section

1. (a) True. The language \emptyset is finite, so slide 1-81 shows that it is regular. Corollary 2.32 then implies that \emptyset is also context-free.
(b) True. Suppose A is finite. Then A is regular by slide $1-81$, so A can't be nonregular.
(c) True. Theorem 2.9.
(d) False. Homework 5, problem 1(a), is a context-free language that is also regular since it has regular expression $0^{*} 1^{*} 0^{*} 1^{*} 0^{*} 1^{*}(0 \cup 1)^{*}$.
(e) True. If B is regular, then so is \bar{B} by Homework 2, problem 3. Then $A \cap \bar{B}$ is regular by slide 1-28.
(f) False. The language $A=\{0,1\}^{*}$, which is infinite, has regular expression $(0 \cup 1)^{*}$. Thus, Theorem 1.54 implies A is regular.
(g) False. The regular expression $1^{*} 0^{*} 1^{*}$ generates the string $001 \notin\left\{1^{n} 0^{n} 1^{n} \mid n \geq 0\right\}$, so it cannot be a correct regular expression for the language. In fact, the language is nonregular, so it cannot have a regular expression.
(h) False. The derivation $S \Rightarrow 0$ generates the string 0 , which is not in the language, so the CFG cannot be correct.
(i) True. Slide 1-28.
(j) False. The language $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is nonregular, and $B=\emptyset$ is a subset of A, but B is regular since it is finite.
2. (a) Shorter strings appear before longer strings, and strings of the same length are in alphabetical order.
(b) - $S \rightarrow Y a$ is not in Chomsky normal form since the CFG cannot have a righthand side (RHS) that is a mix of terminals and variables.

- $X \rightarrow Y S$ is improper since S cannot be on the RHS of a rule.
- $Y \rightarrow \varepsilon$ is improper since ε cannot be on the RHS of rule when the left side is not S.
- $Y \rightarrow Y X Y$ is improper since the RHS cannot have more than two variables.
(c) slide 1-53.
(d) The set D is closed under f means that $x \in D$ implies $f(x) \in D$.

3. (a) Regular expression: $(+\cup-\cup \varepsilon)\left(\Sigma_{1} \Sigma_{1}^{*} . \Sigma_{1}^{*} \cup . \Sigma_{1} \Sigma_{1}^{*}\right)$
(b) DFA:

All transitions not specified go to state 6 .
4. Homework 3, problem 2.
5. DFA

6. $G=(V, \Sigma, R, S)$, with $V=\{S, X\}, \Sigma=\{a, b, c\}$, start variable S and rules $S \rightarrow$ $c S b \mid X$ and $X \rightarrow a X b \mid \varepsilon$.
7. Suppose that A is a regular language. Let p be the pumping length, and consider the string $s=a^{p} b b a^{p} \in A$. Note that $|s|=2 p+2 \geq p$, so the pumping lemma implies we can write $s=x y z$ with $x y^{i} z \in A$ for all $i \geq 0,|y|>0$, and $|x y| \leq p$. Now, $|x y| \leq p$ implies that x and y have only a 's (together up to p in total) and z has the rest of the a 's at the beginning, followed by $b b a^{p}$. Hence, we can write $x=a^{j}$ for some $j \geq 0$, $y=a^{k}$ for some $k \geq 0$, and $z=a^{\ell} b b a^{p}$, where $j+k+\ell=p$ since $x y z=s=a^{p} b b a^{p}$. Also, $|y|>0$ implies $k>0$. Now consider the string $x y y z=a^{j} a^{k} a^{k} a^{\ell} b b a^{p}=a^{p+k} b b a^{p}$ since $j+k+\ell=p$. Note that $x y y z \notin A$ since it is not the same forwards and backwards because $k>0$, which contradicts (i), so A is not a regular language.

