CS 341, Fall 2009 Solutions for Midterm, eLearning Section

- 1. (a) True. The language \emptyset is finite, so slide 1-81 shows that it is regular. Corollary 2.32 then implies that \emptyset is also context-free.
 - (b) True. Suppose A is finite. Then A is regular by slide 1-81, so A can't be nonregular.
 - (c) True. Theorem 2.9.
 - (d) False. Homework 5, problem 1(a), is a context-free language that is also regular since it has regular expression $0^*1^*0^*1^*(0 \cup 1)^*$.
 - (e) True. If B is regular, then so is \overline{B} by Homework 2, problem 3. Then $A \cap \overline{B}$ is regular by slide 1-28.
 - (f) False. The language $A = \{0, 1\}^*$, which is infinite, has regular expression $(0 \cup 1)^*$. Thus, Theorem 1.54 implies A is regular.
 - (g) False. The regular expression $1^*0^*1^*$ generates the string $001 \notin \{1^n0^n1^n \mid n \ge 0\}$, so it cannot be a correct regular expression for the language. In fact, the language is nonregular, so it cannot have a regular expression.
 - (h) False. The derivation $S \Rightarrow 0$ generates the string 0, which is not in the language, so the CFG cannot be correct.
 - (i) True. Slide 1-28.
 - (j) False. The language $A = \{0^n 1^n | n \ge 0\}$ is nonregular, and $B = \emptyset$ is a subset of A, but B is regular since it is finite.
- 2. (a) Shorter strings appear before longer strings, and strings of the same length are in alphabetical order.
 - (b) $S \to Ya$ is not in Chomsky normal form since the CFG cannot have a righthand side (RHS) that is a mix of terminals and variables.
 - $X \to YS$ is improper since S cannot be on the RHS of a rule.
 - $Y \to \varepsilon$ is improper since ε cannot be on the RHS of rule when the left side is not S.
 - $Y \to YXY$ is improper since the RHS cannot have more than two variables.

(c) slide 1-53.

- (d) The set D is closed under f means that $x \in D$ implies $f(x) \in D$.
- 3. (a) Regular expression: $(+ \cup \cup \varepsilon)(\Sigma_1 \Sigma_1^*, \Sigma_1^* \cup .\Sigma_1 \Sigma_1^*)$
 - (b) DFA:

All transitions not specified go to state 6.

- 4. Homework 3, problem 2.
- 5. DFA

- 6. $G = (V, \Sigma, R, S)$, with $V = \{S, X\}$, $\Sigma = \{a, b, c\}$, start variable S and rules $S \rightarrow cSb \mid X$ and $X \rightarrow aXb \mid \varepsilon$.
- 7. Suppose that A is a regular language. Let p be the pumping length, and consider the string $s = a^p bba^p \in A$. Note that $|s| = 2p + 2 \ge p$, so the pumping lemma implies we can write s = xyz with $xy^i z \in A$ for all $i \ge 0$, |y| > 0, and $|xy| \le p$. Now, $|xy| \le p$ implies that x and y have only a's (together up to p in total) and z has the rest of the a's at the beginning, followed by bba^p . Hence, we can write $x = a^j$ for some $j \ge 0$, $y = a^k$ for some $k \ge 0$, and $z = a^\ell bba^p$, where $j + k + \ell = p$ since $xyz = s = a^p bba^p$. Also, |y| > 0 implies k > 0. Now consider the string $xyyz = a^j a^k a^k a^\ell bba^p = a^{p+k} bba^p$ since $j+k+\ell=p$. Note that $xyyz \notin A$ since it is not the same forwards and backwards because k > 0, which contradicts (i), so A is not a regular language.