1. (a) True. The language \(\emptyset \) is finite, so slide 1-81 shows that it is regular. Corollary 2.32 then implies that \(\emptyset \) is also context-free.

(b) True. Suppose \(A \) is finite. Then \(A \) is regular by slide 1-81, so \(A \) can’t be nonregular.

(c) True. Theorem 2.9.

(d) False. Homework 5, problem 1(a), is a context-free language that is also regular since it has regular expression \(0^*1^*0^*1^*(0 \cup 1)^* \).

(e) True. If \(B \) is regular, then so is \(\overline{B} \) by Homework 2, problem 3. Then \(A \cap \overline{B} \) is regular by slide 1-28.

(f) False. The language \(A = \{0,1\}^* \), which is infinite, has regular expression \((0 \cup 1)^* \). Thus, Theorem 1.54 implies \(A \) is regular.

(g) False. The regular expression \(1^*0^*1^* \) generates the string \(001 \not\in \{1^n0^n1^n \mid n \geq 0 \} \), so it cannot be a correct regular expression for the language. In fact, the language is nonregular, so it cannot have a regular expression.

(h) False. The derivation \(S \Rightarrow 0 \) generates the string 0, which is not in the language, so the CFG cannot be correct.

(j) False. The language \(A = \{0^n1^n \mid n \geq 0 \} \) is nonregular, and \(B = \emptyset \) is a subset of \(A \), but \(B \) is regular since it is finite.

2. (a) Shorter strings appear before longer strings, and strings of the same length are in alphabetical order.

(b) \(S \rightarrow Ya \) is not in Chomsky normal form since the CFG cannot have a right-hand side (RHS) that is a mix of terminals and variables.

\(X \rightarrow YS \) is improper since \(S \) cannot be on the RHS of a rule.

\(Y \rightarrow \varepsilon \) is improper since \(\varepsilon \) cannot be on the RHS of rule when the left side is not \(S \).

\(Y \rightarrow YXY \) is improper since the RHS cannot have more than two variables.

(c) slide 1-53.

(d) The set \(D \) is closed under \(f \) means that \(x \in D \) implies \(f(x) \in D \).

3. (a) Regular expression: \((+ \cup - \cup \varepsilon)(\Sigma_1 \Sigma_1^* \Sigma_1^* \cup \Sigma_1 \Sigma_1^*) \)

(b) DFA:
All transitions not specified go to state 6.

5. DFA

6. $G = (V, \Sigma, R, S)$, with $V = \{S, X\}$, $\Sigma = \{a, b, c\}$, start variable S and rules $S \rightarrow cSb \mid X$ and $X \rightarrow aXb \mid \varepsilon$.

7. Suppose that A is a regular language. Let p be the pumping length, and consider the string $s = a^pbba^p \in A$. Note that $|s| = 2p + 2 \geq p$, so the pumping lemma implies we can write $s = xyz$ with $xy^iz \in A$ for all $i \geq 0$, $|y| > 0$, and $|xy| \leq p$. Now, $|xy| \leq p$ implies that x and y have only a’s (together up to p in total) and z has the rest of the a’s at the beginning, followed by bba^p. Hence, we can write $x = a^j$ for some $j \geq 0$, $y = a^k$ for some $k \geq 0$, and $z = a^\ell bba^p$, where $j + k + \ell = p$ since $xyz = s = a^pbba^p$. Also, $|y| > 0$ implies $k > 0$. Now consider the string $xyyz = a^j a^k a^\ell bba^p = a^{p+k} bba^p$ since $j + k + \ell = p$. Note that $xyyz \notin A$ since it is not the same forwards and backwards because $k > 0$, which contradicts (i), so A is not a regular language.