Midterm Exam
CS 341-451: Foundations of Computer Science II - Fall 2009, eLearning section Prof. Marvin K. Nakayama

Print family (or last) name: \qquad

Print given (or first) name: \qquad

I have read and understand all of the instructions below, and I will obey the University Code on Academic Integrity.

Signature and Date

- This exam has 9 pages in total, numbered 1 to 9 . Make sure your exam has all the pages.
- Unless other arrangements have been made with the professor, the exam is to last 2.5 hours and is to be given on Saturday, October 10, 2009.
- This is a closed-book, closed-note exam. No calculators are allowed.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
2. DFA stands for deterministic finite automaton; NFA stands for nondeterministic finite automaton; CFG stands for context-free grammar; PDA stands for pushdown automaton.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step. If you are asked to prove a result X , in your proof of X , you may use any other result Y without proving Y. However, make it clear what the other result Y is that you are using; e.g., write something like, "By the result that $A^{* *}=A^{*}$, we know that"

Problem	1	2	3	4	5	6	7	Total
Points								

1. [20 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - \emptyset is a context-free language.
(b) TRUE FALSE - If A is a nonregular language, then A must be infinite.
(c) TRUE FALSE - Every context-free language has a context-free grammar in Chomsky normal form.
(d) TRUE FALSE - If A is a context-free language, then A must be nonregular.
(e) TRUE FALSE - If A and B are regular languages, then $A \cap \bar{B}$ must be regular.
(f) TRUE FALSE - If a language A is regular, then it A must be finite.
(g) TRUE FALSE - The language $\left\{1^{n} 0^{n} 1^{n} \mid n \geq 0\right\}$ has regular expression $1^{*} 0^{*} 1^{*}$.
(h) TRUE FALSE - The language $\left\{1^{n} 0^{n} \mid n \geq 0\right\}$ has context-free grammar $G=(V, \Sigma, R, S)$, with $V=\{S\}, \Sigma=\{0,1\}$, start variable S, and rules $S \rightarrow 1 S 0 \mid 0$.
(i) TRUE FALSE - The class of regular languages is closed under intersection.
(j) TRUE FALSE - If A is a nonregular language and $B \subseteq A$, then B must be nonregular.
2. [20 points] Give short answers to each of the following parts. Each answer should be at most a few sentences. Be sure to define any notation that you use.
(a) What does it mean for a sequence of strings to be in lexicographic order?
(b) Consider the following CFG $G=(V, \Sigma, R, S)$, with $V=\{S, X, Y\}, \Sigma=\{a, b\}$, start variable S, and rules R as follows:

$$
\begin{aligned}
S & \rightarrow Y a|X X| \varepsilon \\
X & \rightarrow Y S \mid b \\
Y & \rightarrow \varepsilon \mid Y X Y
\end{aligned}
$$

Note that G is not in Chomsky normal form. List all of the rules in G that violate Chomsky normal form. Explain your answer.
(c) Suppose that language A_{1} is recognized by NFA N_{1} below. Note that the transitions are not drawn in N_{1}. Draw a picture of an NFA for A_{1}^{*}.

(d) Suppose f is a mapping defined on a domain D. What does it mean for D to be closed under f ?
3. [20 points] Let Σ be the alphabet of all printable characters on a standard American computer keyboard. Let $\Sigma_{1}=\{0,1, \ldots, 9\}$ be the set of digits, and let $\Sigma_{2}=\{-,+\}$ be the set of signs. Define L to be the set of all strings that represent floating-point numbers that are not in exponential notation. Specifically, L consists of strings that start with an optional sign, followed by zero or more digits, followed by a decimal point, and end with zero or more digits, where the string must have at least one digit and exactly one decimal point. Examples of strings in L are " 13.231 ", "-28." and ".124".
(a) Give a regular expression for the language L.
(b) Give a DFA for the language L with alphabet Σ. You only need to draw the graph; do not specify the DFA as a 5 -tuple.

4. [10 points]

(a) Show by giving an example that, if M is an NFA that recognizes language C, swapping the accept and non-accept states in M does not necessarily yield a new NFA that recognizes \bar{C}. Explain your answer.
(b) Is the class of languages recognized by NFAs closed under complements? Explain your answer.
5. [10 points] Convert the following NFA into an equivalent DFA.

Answer:

Scratch-work area
6. [10 points] Give a context-free grammar G that generates the language

$$
A=\left\{c^{i} a^{j} b^{k} \mid i, j, k \geq 0 \text { and } i+j=k\right\} .
$$

Be sure to specify G as a 4-tuple $G=(V, \Sigma, R, S)$.

Scratch-work area

7. [10 points] Recall the pumping lemma for regular languages:

Theorem: If L is a regular language, then there is a number p (pumping length) where, if $s \in L$ with $|s| \geq p$, then there are strings x, y, z such that $s=x y z$ and
(i) $x y^{i} z \in L$ for each $i \geq 0$,
(ii) $|y|>0$, and
(iii) $|x y| \leq p$.

Let $\Sigma=\{a, b\}$, and consider the language $A=\left\{w \in \Sigma^{*}\left|w=w^{\mathcal{R}},|w|\right.\right.$ is even $\}$, where $w^{\mathcal{R}}$ denotes the reverse of w and $|w|$ denotes the length of w. Prove that A is not a regular language.

