CS 341, Spring 2009 Solutions for Midterm 2

- 1. (a) False, e.g., $\overline{A_{\rm TM}}$ is not Turing-recognizable.
 - (b) False, e.g., if $A = \{00, 11, 111\}$ and $B = \{00, 11\}$, then $\overline{A} \cap B = \emptyset$ but $A \neq B$. For A and B to be equal, we instead need $(\overline{A} \cap B) \cup (A \cap \overline{B}) = \emptyset$.
 - (c) False. A TM M may loop on input w.
 - (d) True, by Theorem 4.9.
 - (e) False, by Theorem 4.8.
 - (f) True, by Theorem 5.2.
 - (g) False, by Theorem 4.11.
 - (h) True, by Theorem 4.5.
 - (i) False, by slide 4-39.
 - (j) False, by Corollary 4.23.
- 2. (a) No, because f(x) = f(z) = 2.
 - (b) Yes, because f(y) = 1 and f(x) = 2, so all members of B are hit by f.
 - (c) No, because f is not one-to-one.
 - (d) An algorithm is a Turing machine that always halts.
 - (e) A language L_1 that is Turing-recognizable has a Turing machine M_1 that may loop forever on a string $w \notin L_1$. A language L_2 that is Turing-decidable has a Turing machine M_2 that always halts.
- 3. (a) $q_1010\#1 \quad xq_210\#1 \quad x1q_20\#1 \quad x10q_2\#1 \quad x10\#q_41 \quad x10\#1q_{\text{reject}}$ (b) $q_11\#1 \quad xq_3\#1 \quad x\#q_51 \quad xq_6\#x \quad q_7x\#x \quad xq_1\#x \quad x\#q_8x \quad x\#xq_8x \quad x\#xqx \quad x\#xq_8x \quad x\#xqx \quad x\#xqx \quad x\#xqx \quad x\#xx \quad x\#xx \quad x\#xx \quad x\#xx \quad x\#x$
- 4. Homework 9, problem 1.
- 5. Define the language as

 $C = \{ \langle N, R \rangle \mid N \text{ is an NFA and } R \text{ is a regular expression with } L(N) = L(R) \}.$

Recall that the proof of Theorem 4.5 defines a Turing machine F that decides the language $EQ_{\text{DFA}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$. Then the following Turing machine T decides C:

- T = "On input $\langle N, R \rangle$, where N is an NFA and R is a regular expression:
 - 1. Convert N and R into equivalent DFAs D_1 and D_2 using the algorithms in the proof of Kleene's Theorem.
 - **2.** Run TM F from Theorem 4.5 on input $\langle D_1, D_2 \rangle$.
 - **3.** If F accepts, accept. If F rejects, reject."
- 6. This is Theorem 5.1, whose proof is given on slide 5-8.