CS 341-005, Fall 2022, Face-to-Face Section Solutions for Midterm 1

1. Multiple choice.
1.1. Answer: (c).

- The languages $L_{1}=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ and $L_{2}=\left\{b^{n} a^{n} c^{n} \mid n \geq 0\right\}$ are infinite, non-context-free languages, with $L_{1} \cap L_{2}=\{\varepsilon\}$, which is regular because it is finite (slide 1-95). Thus, the intersection is also context-free by Corollary 2.32, making (a) incorrect.
- If $L_{1}=L_{2}=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$, then $L_{1} \cap L_{2}=L_{1}$, which is non-regular and non-context-free, so (b) and (d) are incorrect.
1.2. Answer: (a).
- By slide 1-95, L must be regular, making (a) correct, and (b) and (c) incorrect.
- For the language $L=\{a, b\}$, note that $x=a \in L$ and $y=b \in L$, but $x y=a b \notin L$, so L is not closed under Kleene star, making (d) incorrect.
1.3. Answer: (e).
- The regular expression $b^{*} a^{*}$ generates the string $b b a \notin A$, so (a) is incorrect.
- The regular expression $(b a)^{*}$ generates the string $b a b a \notin A$, so (b) is incorrect.
- The language $L(G)$ of the given CFG G in part (c) is $L(G)=\emptyset$ (i.e., no strings at all) because derivations can never terminate: $S \Rightarrow b S a \Rightarrow b b S a a \Rightarrow$ $b b b S a a a \Rightarrow \cdots$, so (c) is incorrect.
- The language A has CFG with rules $S \rightarrow b S a \mid \varepsilon$, so (d) is incorrect.
1.4. Answer: (c).
- HW 6, problem 2a, shows that the class of CFLs is not closed under intersection, so (a) is incorrect.
- HW 6, problem 2b, shows that the class of CFLs is not closed under complementation, so (b) is incorrect.
- HW 5, problem 3c, shows that (c) is correct.
- The language $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not context-free by slide 2-96, so not all languages are context-free, so (d) is incorrect.
- By Corollary 2.32, every regular language is also context-free, so (e) is incorrect.
1.5. Answer: (a).
- Theorem 1.25 implies that $L_{1} \cup L_{2}$ must be regular, whether each of L_{1} and L_{2} is finite or infinite. By Corollary 2.32, every regular language (even if it is infinite) is also context-free, so (a) is correct.
- By Corollary 2.32, every regular language (even if it is infinite) is also contextfree, so (b) and (c) are incorrect.
- Theorem 1.25 implies that $L_{1} \cup L_{2}$ must be regular, so (d) is incorrect.
1.6. Answer: (h).
- The regular expression $(00 \cup 11)^{*}$ cannot generate the string $1010 \in L$, so (i) is incorrect.
- The regular expression $(00 \cup 11 \cup(01 \cup 10)(01 \cup 10))^{*}$ cannot generate the string $010001 \in L$, so (ii) is incorrect.
- The regular expression $\left((01 \cup 10)(00 \cup 11)^{*}(01 \cup 10)\right)^{*}$ cannot generate the string $11 \in L$, so (iii) is incorrect.
1.7. Answer: (d).
- The language $A=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is non-context-free and infinite, so (a) is incorrect. In fact, if A is non-context-free language, A must be infinite.
- $A=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is also nonregular, so (b) is incorrect.
- $A=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is non-context-free, and $a b c \in A$ but $(a b c)^{\mathcal{R}}=c b a \notin A$, so A is not closed under reversals, making (c) incorrect.
1.8. Answer: (c).
- By Theorem 2.20, a language is context-free if and only if some PDA recognizes it, so we can answer the question by considering CFLs. The language $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is context-free but infinite, so (a) is incorrect.
- The language $\{\varepsilon\}$ is finite, so it is regular (slide 1-95), and Corollary 2.32 ensures it is also context-free, so (b) is incorrect.
- By Theorem 2.20, a language is context-free if and only if some PDA recognizes it, and Theorem 2.9 then guarantees that the language has a CFG in Chomsky normal form, so (d) is incorrect.
1.9. Answer: (c).
- Kleene's Theorem (Theorem 1.54) implies that L must be regular, so (a) is incorrect.
- Because L must be regular, Corollary 2.32 ensures L is also context-free, so (c) is correct and (b) is incorrect.
- For the language L with regular expression $a b^{*}$, we have that $x=a b \in L$ and $y=a b b \in L$, but $x y=a b a b b \notin L$, so L is not closed under concatenation, making (d) incorrect.
1.10. Answer: (b).
- HW 4, problem 5c, shows that (a) is incorrect, and that (b) is correct.
- Slightly modifying the proof on slide 1-105 shows that the language $L_{1}=$ $\left\{a^{n} b^{n} \mid n \geq 1\right\}$ is non-regular. Adding ε to L_{1} leads to the language $L_{2}=$ $\left\{a^{n} b^{n} \mid n \geq 0\right\}$, which is context-free (with CFG having rules $S \rightarrow a S b \mid \varepsilon$), so (c) is incorrect.
- Slightly modifying the proof on slide 2-96 shows that the language $L_{1}=$ $\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$ is non-context-free, so it is also non-regular by Corollary 2.32. Adding ε to L_{1} leads to the language $L_{2}=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$, which is non-context-free by the proof on slide 2-96, so (d) is incorrect.

2. (a) $a^{*} b a^{*}\left(a^{*} b a^{*} b a^{*}\right)^{*}$. This is essentially HW 2 , problem 4 b .

There are infinitely many other correct regular expressions for this language, such as $\left(a^{*} b a^{*} b a^{*}\right)^{*} a^{*} b a^{*}$
or $a^{*} b\left(a^{*} b a^{*} b a^{*}\right)^{*} a^{*}$
or $a^{*} b a^{*}\left(a^{*} b a^{*} b a^{*}\right)^{*} a^{*}$ or
Some incorrect regular expressions include $b(b b)^{*}, a^{*} b^{*}\left(a^{*} b^{*} a^{*} b^{*} a^{*}\right)^{*} a^{*}$, etc.
(b) $\left(a b^{*}(a \cup b) \cup b\right)(a \cup b) a^{*}$. Another regular expression is $a b^{*}(a \cup b)(a \cup b) a^{*} \cup b(a \cup b) a^{*}$. There are infinitely many correct regular expressions for this language.
(c) As on slide 1-66 of the notes, if A_{1} is defined by NFA N_{1}, then an NFA N for A_{1}^{*} is as below:

N

(d) (Homework 5, problem 3b.) Assume that $S_{3} \notin V_{1} \cup V_{2}$, and $V_{1} \cap V_{2}=\emptyset$ is given. Then a CFG for $A_{1} \cup A_{2}$ is $G_{3}=\left(V_{3}, \Sigma, R_{3}, S_{3}\right)$ with $V_{3}=V_{1} \cup V_{2} \cup\left\{S_{3}\right\}$ and $R_{3}=R_{1} \cup R_{2} \cup\left\{S_{3} \rightarrow S_{1} \mid S_{2}\right\}$.
3. A DFA for C is below:

4. (a) This is essentially HW 5 , problem 1f. Let $L=\left\{c^{i} b^{j} a^{k} \mid i, j, k \geq 0\right.$ and $\left.j=i+k\right\}$ be the language given in the problem, and define other languages

$$
\begin{aligned}
& L_{1}=\left\{c^{i} b^{i} \mid i \geq 0\right\} \\
& L_{2}=\left\{b^{k} a^{k} \mid k \geq 0\right\}
\end{aligned}
$$

Note that $L=L_{1} \circ L_{2}$ because concatenating any string $c^{i} b^{i} \in L_{1}$ with any string $b^{k} a^{k} \in L_{2}$ results in a string $c^{i} b^{i} b^{k} a^{k}=c^{i} b^{i+k} a^{k} \in L$. Thus, if L_{1} has a CFG $G_{1}=\left(V_{1}, \Sigma, R_{1}, S_{1}\right)$, and L_{2} has a CFG $G_{2}=\left(V_{2}, \Sigma, R_{2}, S_{2}\right)$, we can construct a CFG for $L=L_{1} \circ L_{2}$ by using the approach in HW 5, problem 3b. Specifically,

- L_{1} has a CFG $G_{1}=\left(V_{1}, \Sigma, R_{1}, S_{1}\right)$, with $V_{1}=\left\{S_{1}\right\}, \Sigma=\{a, b, c\}, S_{1}$ as the starting variable, and rules $S_{1} \rightarrow c S_{1} b \mid \varepsilon$ in R_{1};
- L_{2} has a CFG $G_{2}=\left(V_{2}, \Sigma, R_{2}, S_{2}\right)$, with $V_{2}=\left\{S_{2}\right\}, \Sigma=\{a, b, c\}, S_{2}$ as the starting variable, and rules $S_{2} \rightarrow b S_{2} a \mid \varepsilon$ in R_{2}.
Even though $\Sigma=\{a, b, c\}$ for both CFGs G_{1} and G_{2}, CFG G_{1} never generates a string with c, and CFG G_{2} never generates a string with b. Then a CFG $G_{3}=\left(V_{3}, \Sigma, R_{3}, S_{3}\right)$ for L has $V_{3}=V_{1} \cup V_{2} \cup\left\{S_{3}\right\}=\left\{S_{1}, S_{2}, S_{3}\right\}$ with S_{3} the starting variable, $\Sigma=\{a, b, c\}$, and rules

$$
\begin{aligned}
& S_{3} \rightarrow S_{1} S_{2} \\
& S_{1} \rightarrow c S_{1} b \mid \varepsilon \\
& S_{2} \rightarrow b S_{2} a \mid \varepsilon
\end{aligned}
$$

There are infinitely many other correct CFGs for L.
(b) This is essentially HW 6, problem 1 g . There are infinitely many correct PDAs for L. Here is one:

In the above PDA,

- state q_{2} pushes an x for each c read,
- state q_{3} reads a b and pops an x for each c read in state q_{2},
- the transition from q_{3} to q_{4} makes sure the stack is empty, and pushes another \$ on the stack,
- state q_{4} pushes an x for each additional b read,
- state q_{5} reads an a and pops an x to match each additional b read in state q_{4}.

Another approach uses the algorithm from Lemma 2.21 to convert the CFG in part (a) into a PDA.

Note that

- The path $q_{2} \rightarrow q_{4} \rightarrow q_{5} \rightarrow q_{2}$ corresponds to the rule $S_{1} \rightarrow c S_{1} b$, where the symbols on the right side of the rule are pushed in reverse order.
- The path $q_{2} \rightarrow q_{6} \rightarrow q_{7} \rightarrow q_{2}$ corresponds to the rule $S_{2} \rightarrow b S_{2} a$, where the symbols on the right side of the rule are pushed in reverse order.
- The path $q_{2} \rightarrow q_{8} \rightarrow q_{2}$ corresponds to the rule $S_{3} \rightarrow S_{1} S_{2}$, where the symbols on the right side of the rule are pushed in reverse order.

5. Language $A=\left\{c^{i} b^{j} a^{k} \mid i, j, k \geq 0\right.$ and $\left.j=i+k\right\}$ is nonregular. We prove this by contradiction. Suppose that A is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string $s=c^{p} b^{p}$ Note that $s \in A$ because $s=c^{i} b^{k} a^{k}$ for $i=j=p$ and $k=0$. Also, we have that $|s|=p>p$, so the Pumping Lemma will hold. Thus, there exist strings x, y, and z such that $s=x y z$ and
(a) $x y^{i} z \in A$ for each $i \geq 0$,
(b) $|y|>0$,
(c) $|x y| \leq p$.

Because the first p symbols of s are all c 's, the third property implies that x and y consist only of c 's. So z will be the rest of the first set of c 's (possibly none), followed by b^{p}. The second property states that $|y|>0$, so y has at least one c. More precisely,
we can then say that

$$
\begin{aligned}
x & =c^{j} \text { for some } j \geq 0 \\
y & =c^{k} \text { for some } k \geq 1 \\
z & =c^{m} a^{p} \text { for some } m \geq 0
\end{aligned}
$$

Because

$$
c^{p} b^{p}=s=x y z=c^{j} c^{k} c^{m} b^{p}=c^{j+k+m} b^{p}
$$

we must have that

$$
j+k+m=p \quad \text { and } \quad k \geq 1
$$

The first property implies that the pumped string $x y^{2} z \in A$, but

$$
\begin{aligned}
x y^{2} z & =c^{j} c^{k} c^{k} c^{m} b^{p} \\
& =c^{p+k} b^{p} \notin A
\end{aligned}
$$

since $k \geq 1$, so in the pumped string, the number of b 's does not equal the sum of the number of c 's and a 's. This contradicts the first property of the pumping lemma. Therefore, A is a nonregular language.
Another possible string that will result in a contradiction is $s=c^{p} b^{2 p} a^{p} \in A$, where $|s|=4 p>p$. Then splitting $s=x y z$ satisfying properties (ii) and (iii) of the pumping lemma will lead to

$$
\begin{aligned}
x & =c^{j} \text { for some } j \geq 0 \\
y & =c^{k} \text { for some } k \geq 1 \\
z & =c^{m} b^{2 p} a^{p} \text { for some } m \geq 0
\end{aligned}
$$

where $j+k+m=p$. Property (i) of the pumping lemma states that xyyz $\in A$, but $x y y z=c^{p+k} b^{2 p} a^{p} \notin A$ because $2 p \neq p+k+p=2 p+k$ since $k>0$, giving a contradiction.

