
CS 341-005, Fall 2022, Face-to-Face Section

Solutions for Midterm 1

1. Multiple choice.

1.1. Answer: (c).

• The languages L1 = { anbncn | n ≥ 0 } and L2 = { bnancn | n ≥ 0 } are
infinite, non-context-free languages, with L1 ∩ L2 = {ε}, which is regular
because it is finite (slide 1-95). Thus, the intersection is also context-free by
Corollary 2.32, making (a) incorrect.

• If L1 = L2 = { anbncn | n ≥ 0 }, then L1 ∩ L2 = L1, which is non-regular and
non-context-free, so (b) and (d) are incorrect.

1.2. Answer: (a).

• By slide 1-95, Lmust be regular, making (a) correct, and (b) and (c) incorrect.

• For the language L = {a, b}, note that x = a ∈ L and y = b ∈ L, but
xy = ab 6∈ L, so L is not closed under Kleene star, making (d) incorrect.

1.3. Answer: (e).

• The regular expression b∗a∗ generates the string bba 6∈ A, so (a) is incorrect.

• The regular expression (ba)∗ generates the string baba 6∈ A, so (b) is incorrect.

• The language L(G) of the given CFG G in part (c) is L(G) = ∅ (i.e., no
strings at all) because derivations can never terminate: S ⇒ bSa ⇒ bbSaa ⇒
bbbSaaa ⇒ · · · , so (c) is incorrect.

• The language A has CFG with rules S → bSa | ε, so (d) is incorrect.

1.4. Answer: (c).

• HW 6, problem 2a, shows that the class of CFLs is not closed under intersec-
tion, so (a) is incorrect.

• HW 6, problem 2b, shows that the class of CFLs is not closed under comple-
mentation, so (b) is incorrect.

• HW 5, problem 3c, shows that (c) is correct.

• The language { anbncn | n ≥ 0 } is not context-free by slide 2-96, so not all
languages are context-free, so (d) is incorrect.

• By Corollary 2.32, every regular language is also context-free, so (e) is incor-
rect.

1.5. Answer: (a).

• Theorem 1.25 implies that L1 ∪ L2 must be regular, whether each of L1 and
L2 is finite or infinite. By Corollary 2.32, every regular language (even if it
is infinite) is also context-free, so (a) is correct.

• By Corollary 2.32, every regular language (even if it is infinite) is also context-
free, so (b) and (c) are incorrect.

• Theorem 1.25 implies that L1 ∪ L2 must be regular, so (d) is incorrect.
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1.6. Answer: (h).

• The regular expression (00 ∪ 11)∗ cannot generate the string 1010 ∈ L, so (i)
is incorrect.

• The regular expression (00 ∪ 11 ∪ (01 ∪ 10)(01 ∪ 10))∗ cannot generate the
string 010001 ∈ L, so (ii) is incorrect.

• The regular expression ((01 ∪ 10)(00 ∪ 11)∗(01 ∪ 10))∗ cannot generate the
string 11 ∈ L, so (iii) is incorrect.

1.7. Answer: (d).

• The language A = { anbncn | n ≥ 0 } is non-context-free and infinite, so (a)
is incorrect. In fact, if A is non-context-free language, A must be infinite.

• A = { anbncn | n ≥ 0 } is also nonregular, so (b) is incorrect.

• A = { anbncn | n ≥ 0 } is non-context-free, and abc ∈ A but (abc)R = cba 6∈ A,
so A is not closed under reversals, making (c) incorrect.

1.8. Answer: (c).

• By Theorem 2.20, a language is context-free if and only if some PDA recog-
nizes it, so we can answer the question by considering CFLs. The language
{ anbn | n ≥ 0 } is context-free but infinite, so (a) is incorrect.

• The language {ε} is finite, so it is regular (slide 1-95), and Corollary 2.32
ensures it is also context-free, so (b) is incorrect.

• By Theorem 2.20, a language is context-free if and only if some PDA recog-
nizes it, and Theorem 2.9 then guarantees that the language has a CFG in
Chomsky normal form, so (d) is incorrect.

1.9. Answer: (c).

• Kleene’s Theorem (Theorem 1.54) implies that L must be regular, so (a) is
incorrect.

• Because L must be regular, Corollary 2.32 ensures L is also context-free, so
(c) is correct and (b) is incorrect.

• For the language L with regular expression ab∗, we have that x = ab ∈ L and
y = abb ∈ L, but xy = ababb 6∈ L, so L is not closed under concatenation,
making (d) incorrect.

1.10. Answer: (b).

• HW 4, problem 5c, shows that (a) is incorrect, and that (b) is correct.

• Slightly modifying the proof on slide 1-105 shows that the language L1 =
{ anbn | n ≥ 1 } is non-regular. Adding ε to L1 leads to the language L2 =
{ anbn | n ≥ 0 }, which is context-free (with CFG having rules S → aSb | ε),
so (c) is incorrect.

• Slightly modifying the proof on slide 2-96 shows that the language L1 =
{ anbncn | n ≥ 1 } is non-context-free, so it is also non-regular by Corollary
2.32. Adding ε to L1 leads to the language L2 = { anbncn | n ≥ 0 }, which is
non-context-free by the proof on slide 2-96, so (d) is incorrect.
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2. (a) a∗ba∗(a∗ba∗ba∗)∗. This is essentially HW 2, problem 4b.
There are infinitely many other correct regular expressions for this language, such
as (a∗ba∗ba∗)∗a∗ba∗

or a∗b(a∗ba∗ba∗)∗a∗

or a∗ba∗(a∗ba∗ba∗)∗a∗ or . . . .
Some incorrect regular expressions include b(bb)∗, a∗b∗(a∗b∗a∗b∗a∗)∗a∗, etc.

(b) (ab∗(a∪b)∪b)(a∪b)a∗. Another regular expression is ab∗(a∪b)(a∪b)a∗∪b(a∪b)a∗.
There are infinitely many correct regular expressions for this language.

(c) As on slide 1-66 of the notes, if A1 is defined by NFA N1, then an NFA N for A∗

1

is as below:

N1

N

ε

εε

(d) (Homework 5, problem 3b.) Assume that S3 6∈ V1 ∪ V2, and V1 ∩ V2 = ∅ is given.
Then a CFG for A1 ∪ A2 is G3 = (V3,Σ, R3, S3) with V3 = V1 ∪ V2 ∪ {S3} and
R3 = R1 ∪ R2 ∪ {S3 → S1|S2 }.

3. A DFA for C is below:

1, 3 2

3 2, 4

∅

b

a

b

a

b a

b

a

a, b

4. (a) This is essentially HW 5, problem 1f. Let L = { ci bj ak | i, j, k ≥ 0 and j = i+ k }
be the language given in the problem, and define other languages

L1 = { ci bi | i ≥ 0 },

L2 = { bk ak | k ≥ 0 }.
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Note that L = L1 ◦L2 because concatenating any string cibi ∈ L1 with any string
bkak ∈ L2 results in a string cibibkak = cibi+kak ∈ L. Thus, if L1 has a CFG
G1 = (V1,Σ, R1, S1), and L2 has a CFG G2 = (V2,Σ, R2, S2), we can construct a
CFG for L = L1 ◦ L2 by using the approach in HW 5, problem 3b. Specifically,

• L1 has a CFG G1 = (V1,Σ, R1, S1), with V1 = {S1}, Σ = {a, b, c}, S1 as the
starting variable, and rules S1 → cS1b | ε in R1;

• L2 has a CFG G2 = (V2,Σ, R2, S2), with V2 = {S2}, Σ = {a, b, c}, S2 as the
starting variable, and rules S2 → bS2a | ε in R2.

Even though Σ = {a, b, c} for both CFGs G1 and G2, CFG G1 never generates
a string with c, and CFG G2 never generates a string with b. Then a CFG
G3 = (V3,Σ, R3, S3) for L has V3 = V1 ∪ V2 ∪ {S3} = {S1, S2, S3} with S3 the
starting variable, Σ = {a, b, c}, and rules

S3 → S1S2

S1 → cS1b | ε

S2 → bS2a | ε

There are infinitely many other correct CFGs for L.

(b) This is essentially HW 6, problem 1g. There are infinitely many correct PDAs for
L. Here is one:

q1 q2 q3 q4 q5 q6
ε, ε → $

c, ε → x

ε, ε → ε

b, x → ε

ε, $ → $

b, ε → x

ε, ε → ε

a, x → ε

ε, $ → ε

In the above PDA,

• state q2 pushes an x for each c read,

• state q3 reads a b and pops an x for each c read in state q2,

• the transition from q3 to q4 makes sure the stack is empty, and pushes another
$ on the stack,

• state q4 pushes an x for each additional b read,

• state q5 reads an a and pops an x to match each additional b read in state q4.

Another approach uses the algorithm from Lemma 2.21 to convert the CFG in
part (a) into a PDA.
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q0 q1

q2q4

q5

q6 q7

q8

q3
ε, ε → $

ε, ε → S

ε, S1 → b

ε, ε → S1
ε, ε → c

ε, S2 → a

ε, ε → S2

ε, ε → b

ε, S3 → S2

ε, ε → S1

ε, S1 → ε

ε, S2 → ε

a, a → ε

b, b → ε

c, c → ε ε, $ → ε

Note that

• The path q2 → q4 → q5 → q2 corresponds to the rule S1 → cS1b, where the
symbols on the right side of the rule are pushed in reverse order.

• The path q2 → q6 → q7 → q2 corresponds to the rule S2 → bS2a, where the
symbols on the right side of the rule are pushed in reverse order.

• The path q2 → q8 → q2 corresponds to the rule S3 → S1S2, where the symbols
on the right side of the rule are pushed in reverse order.

5. Language A = { cibjak | i, j, k ≥ 0 and j = i + k } is nonregular. We prove this by
contradiction. Suppose that A is a regular language. Let p be the “pumping length” of
the Pumping Lemma. Consider the string s = cpbp Note that s ∈ A because s = cibkak

for i = j = p and k = 0. Also, we have that |s| = p > p, so the Pumping Lemma will
hold. Thus, there exist strings x, y, and z such that s = xyz and

(a) xyiz ∈ A for each i ≥ 0,

(b) |y| > 0,

(c) |xy| ≤ p.

Because the first p symbols of s are all c’s, the third property implies that x and y

consist only of c’s. So z will be the rest of the first set of c’s (possibly none), followed
by bp. The second property states that |y| > 0, so y has at least one c. More precisely,
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we can then say that

x = cj for some j ≥ 0,

y = ck for some k ≥ 1,

z = cmap for some m ≥ 0.

Because
cpbp = s = xyz = cjckcmbp = cj+k+mbp,

we must have that
j + k +m = p and k ≥ 1.

The first property implies that the pumped string xy2z ∈ A, but

xy2z = cjckckcmbp

= cp+kbp 6∈ A

since k ≥ 1, so in the pumped string, the number of b’s does not equal the sum of
the number of c’s and a’s. This contradicts the first property of the pumping lemma.
Therefore, A is a nonregular language.

Another possible string that will result in a contradiction is s = cpb2pap ∈ A, where
|s| = 4p > p. Then splitting s = xyz satisfying properties (ii) and (iii) of the pumping
lemma will lead to

x = cj for some j ≥ 0,

y = ck for some k ≥ 1,

z = cmb2pap for some m ≥ 0,

where j + k + m = p. Property (i) of the pumping lemma states that xyyz ∈ A,
but xyyz = cp+kb2pap 6∈ A because 2p 6= p + k + p = 2p + k since k > 0, giving a
contradiction.
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