CS 341-007, Fall 2022, Face-to-Face Section Solutions for Midterm 1

- 1. Multiple choice.
 - 1.1. Answer: (c).
 - HW 6, problem 2a, shows that the class of CFLs is not closed under intersection, so (a) is incorrect.
 - HW 6, problem 2b, shows that the class of CFLs is not closed under complementation, so (b) is incorrect.
 - HW 5, problem 3b, shows that (c) is correct.
 - The language $\{a^n b^n c^n \mid n \ge 0\}$ is not context-free by slide 2-96, so not all languages are context-free, so (d) is incorrect.
 - By Corollary 2.32, every regular language is also context-free, so (e) is incorrect.
 - 1.2. Answer: (a).
 - By Corollary 2.32, every regular language (even if it is infinite) is also contextfree, so (a) is correct, and (b) and (c) are incorrect.
 - Theorem 1.25 implies that $L_1 \cup L_2$ must be regular, so (d) is incorrect.
 - 1.3. Answer: (c).
 - The languages $L_1 = \{a^n b^n c^n \mid n \ge 0\}$ and $L_2 = \{b^n a^n c^n \mid n \ge 0\}$ are infinite, non-regular languages, with $L_1 \cap L_2 = \{\varepsilon\}$, which is regular because it is finite (slide 1-95), making (a) incorrect.
 - If $L_1 = L_2 = \{ a^n b^n c^n \mid n \ge 0 \}$, then $L_1 \cap L_2 = L_1$, which is non-regular and non-context-free, so (b) and (d) are incorrect.
 - 1.4. Answer: (e).
 - The language $L_1 = \{ a^n b^n c^n \mid n \ge 0 \}$ is infinite, not regular, and not contextfree, so (a), (b), and (c) are incorrect.
 - For the same language L_1 , note that $x = abc \in L_1$ and $y = aabbcc \in L_1$, but $xy = abcaabbcc \notin L_1$, so L_1 is not closed under Kleene star, making (d) incorrect.
 - 1.5. Answer: (e).
 - The regular expression b^*a^* generates the string $bba \notin A$, so (a) is incorrect.
 - The regular expression $(ba)^*$ generates the string $baba \notin A$, so (b) is incorrect.
 - The given CFG G in part (c) has language $L(G) = \emptyset$ (i.e., no strings at all) because derivations can never terminate: $S \Rightarrow bSa \Rightarrow bbSaaa \Rightarrow bbbSaaa \Rightarrow \cdots$, so (c) is incorrect.
 - The language A has CFG with rules $S \to bSa \mid \varepsilon$, so (d) is incorrect.
 - 1.6. Answer: (d).

- The language $A = \{ a^n b^n c^n \mid n \ge 0 \}$ is non-context-free and infinite, so (a) is incorrect. In fact, if A is non-context-free language, A must be infinite.
- $A = \{ a^n b^n c^n \mid n \ge 0 \}$ is also nonregular, so (b) is incorrect.
- $A = \{ a^n b^n c^n \mid n \ge 0 \}$ is non-context-free, and $abc \in A$ but $(abc)^{\mathcal{R}} = cba \notin A$, so A is not closed under reversals, making (c) incorrect.
- 1.7. Answer: (c).
 - By Theorem 2.20, a language is context-free if and only if some PDA recognizes it, so we can answer the question by considering CFLs. The language { aⁿbⁿ | n ≥ 0 } is context-free but infinite, so (a) is incorrect.
 - The language $\{\varepsilon\}$ is finite, so it is regular (slide 1-95), and Corollary 2.32 ensures it is also context-free, so (b) is incorrect.
 - Theorem 2.9 guarantees that a context-free language has a CFG in Chomsky normal form, so (d) is incorrect.
- 1.8. Answer: (c).
 - Kleene's Theorem (Theorem 1.54) implies that L must be regular, so (a) is incorrect.
 - Because L must be regular, Corollary 2.32 ensures L is also context-free, so (c) is correct and (b) is incorrect.
 - For the language L with regular expression ab^* , we have that $x = ab \in L$ and $y = abb \in L$, but $xy = ababb \notin L$, so L is not closed under concatenation, making (d) incorrect.
- 1.9. Answer: (b).
 - HW 4, problem 5c, shows that (a) is incorrect, and that (b) is correct.
 - Slightly modifying the proof on slide 1-105 shows that the language $L_1 = \{a^n b^n \mid n \ge 1\}$ is non-regular. Adding ε to L_1 leads to the language $L_2 = \{a^n b^n \mid n \ge 0\}$, which is context-free (with CFG having rules $S \to aSb \mid \varepsilon$), so (c) is incorrect.
 - Slightly modifying the proof on slide 2-96 shows that the language $L_1 = \{a^n b^n c^n \mid n \ge 1\}$ is non-context-free, so it is also non-regular by Corollary 2.32. Adding ε to L_1 leads to the language $L_2 = \{a^n b^n c^n \mid n \ge 0\}$, which is non-context-free by the proof on slide 2-96, so (d) is incorrect.
- 1.10. Answer: (h).
 - The regular expression 01^*0 cannot generate the string $11 \in L$, so (i) is incorrect.
 - The regular expression $0(0\cup 1)^*0\cup 1(0\cup 1)^*1$ cannot generate the string $1 \in L$, so (ii) is incorrect.
 - The regular expression $(0 \cup 1)(0 \cup 1)^*(0 \cup 1)$ cannot generate the string $1 \in L$, so (iii) is incorrect.
- 2. (a) $(a \cup b)^* (a \cup b) (a \cup b) a(a \cup b)$

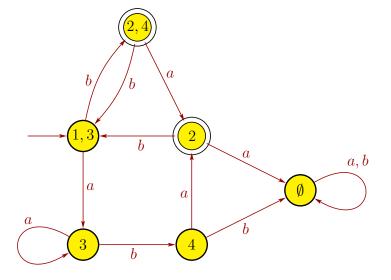
There are infinitely many other correct regular expressions for this language, such

as $(a \cup b)(a \cup b)^*(a \cup b)a(a \cup b)$ or $(a \cup b)(a \cup b)(a \cup b)^*a(a \cup b)$ or $a(a \cup b)(a \cup b)^*a(a \cup b) \cup b(a \cup b)(a \cup b)^*a(a \cup b)$ or ...

- (b) $(aa \cup b)b^*aa^*$. Another regular expression is $(aab^* \cup bb^*)aa^*$. There are infinitely many other correct regular expressions for this language.
- (c) After one step, the CFG is then

$$\begin{array}{rcl} S_{0} & \rightarrow & S \\ S & \rightarrow & 1SA0A \mid 1S0A \mid 1SA0 \mid 1S0 \mid 0AS1S \mid 0S1S \mid \varepsilon \\ A & \rightarrow & 10S1 \end{array}$$

- (d) (Homework 2, problem 5.) Given a DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ for language A_1 and a DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ for language A_2 , the language $A_3 = A_1 \cap A_2$ is recognized by the DFA $M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3)$, with
 - $Q_3 = Q_1 \times Q_2$,
 - $\delta_3((x,y),\ell) = (\delta_1(x,\ell), \delta_2(y,\ell))$ for $(x,y) \in Q_3$ and $\ell \in \Sigma$,
 - $q_3 = (q_1, q_2)$, and
 - $F_3 = F_1 \times F_2$.
- 3. A DFA for C is below:

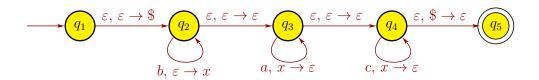


4. (a) $G = (V, \Sigma, R, S)$ with set of variables $V = \{S, X\}$, where S is the start variable; set of terminals $\Sigma = \{a, b, c\}$; and rules

$$\begin{array}{rcl} S & \rightarrow & bSc \mid X \\ X & \rightarrow & bXa \mid \varepsilon \end{array}$$

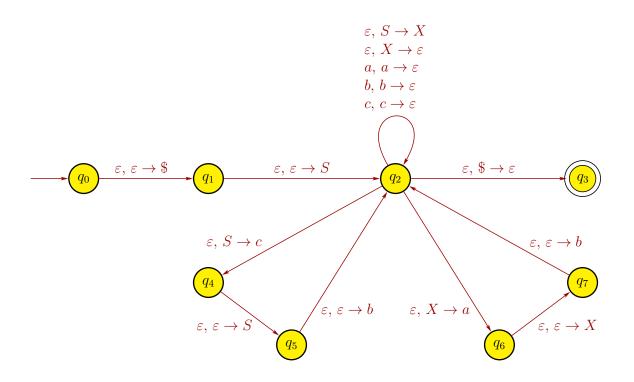
There are infinitely many other correct CFGs for L.

(b) There are infinitely many correct PDAs for L. Here is one:



In the above PDA, state q_2 pushes an x for each b read, state q_3 pops an x for each a read, and state q_4 pops an x for each c read to match the c's and a's with the b's.

Another approach uses the algorithm from Lemma 2.21 to convert the CFG in part (a) into a PDA.



In the second PDA,

- The path $q_2 \rightarrow q_4 \rightarrow q_5 \rightarrow q_2$ corresponds to the rule $S \rightarrow bSc$, where the symbols on the right side of the rule are pushed in reverse order.
- The path $q_2 \rightarrow q_6 \rightarrow q_7 \rightarrow q_2$ corresponds to the rule $X \rightarrow bXa$, where the symbols on the right side of the rule are pushed in reverse order.
- 5. Language $A = \{ b^i a^j c^k \mid i, j, k \ge 0 \text{ and } i = j + k \}$ is nonregular. We prove this by contradiction. Suppose that A is a regular language. Let p be the "pumping length"

of the Pumping Lemma. Consider the string $s = b^p a^p$. Note that $s \in A$ because $s = b^i a^j c^k$ with i = j = p and k = 0. Also, we have that |s| = 2p > p, so the Pumping Lemma will hold. Thus, there exist strings x, y, and z such that s = xyz and

- (a) $xy^i z \in A$ for each $i \ge 0$,
- (b) |y| > 0,
- (c) $|xy| \leq p$.

Because the first p symbols of s are all b's, the third property implies that x and y consist only of b's. So z will be the rest of the first set of b's (possibly none), followed by a^p . The second property states that |y| > 0, so y has at least one b. More precisely, we can then say that

$$\begin{aligned} x &= b^{j} \text{ for some } j \ge 0, \\ y &= b^{k} \text{ for some } k \ge 1, \\ z &= b^{m} a^{p} \text{ for some } m > 0 \end{aligned}$$

Because

$$b^p a^p = s = xyz = b^j b^k b^m a^p = b^{j+k+m} a^p.$$

we must have that

$$j + k + m = p$$
 and $k \ge 1$.

The first property implies that the pumped string $xy^2z \in A$, but

$$xy^{2}z = b^{j}b^{k}b^{k}b^{m}a^{p}$$
$$= b^{p+k}a^{p} \notin A$$

because the number of b's does not equal the sum of the number of a's and c's. This contradicts the first property of the pumping lemma. Therefore, A is a nonregular language.

Another possible string that will result in a contradiction is $s = b^{2p}a^pc^p \in A$, where |s| = 4p > p. Then splitting s = xyz satisfying properties (ii) and (iii) of the pumping lemma will lead to

$$\begin{aligned} x &= b^{j} \text{ for some } j \ge 0, \\ y &= b^{k} \text{ for some } k \ge 1, \\ z &= b^{m+p} a^{p} c^{p} \text{ for some } m \ge 0. \end{aligned}$$

where j + k + m = p. Property (i) of the pumping lemma states that $xyyz \in A$, but $xyyz = b^{2p+k}a^pc^p \notin A$ because $k \ge 1$, giving a contradiction.