
CS 341-007, Fall 2022, Face-to-Face Section

Solutions for Midterm 1

1. Multiple choice.

1.1. Answer: (c).

• HW 6, problem 2a, shows that the class of CFLs is not closed under intersec-
tion, so (a) is incorrect.

• HW 6, problem 2b, shows that the class of CFLs is not closed under comple-
mentation, so (b) is incorrect.

• HW 5, problem 3b, shows that (c) is correct.

• The language { anbncn | n ≥ 0 } is not context-free by slide 2-96, so not all
languages are context-free, so (d) is incorrect.

• By Corollary 2.32, every regular language is also context-free, so (e) is incor-
rect.

1.2. Answer: (a).

• By Corollary 2.32, every regular language (even if it is infinite) is also context-
free, so (a) is correct, and (b) and (c) are incorrect.

• Theorem 1.25 implies that L1 ∪ L2 must be regular, so (d) is incorrect.

1.3. Answer: (c).

• The languages L1 = { anbncn | n ≥ 0 } and L2 = { bnancn | n ≥ 0 } are
infinite, non-regular languages, with L1 ∩ L2 = {ε}, which is regular because
it is finite (slide 1-95), making (a) incorrect.

• If L1 = L2 = { anbncn | n ≥ 0 }, then L1 ∩ L2 = L1, which is non-regular and
non-context-free, so (b) and (d) are incorrect.

1.4. Answer: (e).

• The language L1 = { anbncn | n ≥ 0 } is infinite, not regular, and not context-
free, so (a), (b), and (c) are incorrect.

• For the same language L1, note that x = abc ∈ L1 and y = aabbcc ∈ L1,
but xy = abcaabbcc 6∈ L1, so L1 is not closed under Kleene star, making (d)
incorrect.

1.5. Answer: (e).

• The regular expression b∗a∗ generates the string bba 6∈ A, so (a) is incorrect.

• The regular expression (ba)∗ generates the string baba 6∈ A, so (b) is incorrect.

• The given CFG G in part (c) has language L(G) = ∅ (i.e., no strings at all)
because derivations can never terminate: S ⇒ bSa ⇒ bbSaa ⇒ bbbSaaa ⇒
· · ·, so (c) is incorrect.

• The language A has CFG with rules S → bSa | ε, so (d) is incorrect.

1.6. Answer: (d).
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• The language A = { anbncn | n ≥ 0 } is non-context-free and infinite, so (a)
is incorrect. In fact, if A is non-context-free language, A must be infinite.

• A = { anbncn | n ≥ 0 } is also nonregular, so (b) is incorrect.

• A = { anbncn | n ≥ 0 } is non-context-free, and abc ∈ A but (abc)R = cba 6∈ A,
so A is not closed under reversals, making (c) incorrect.

1.7. Answer: (c).

• By Theorem 2.20, a language is context-free if and only if some PDA recog-
nizes it, so we can answer the question by considering CFLs. The language
{ anbn | n ≥ 0 } is context-free but infinite, so (a) is incorrect.

• The language {ε} is finite, so it is regular (slide 1-95), and Corollary 2.32
ensures it is also context-free, so (b) is incorrect.

• Theorem 2.9 guarantees that a context-free language has a CFG in Chomsky
normal form, so (d) is incorrect.

1.8. Answer: (c).

• Kleene’s Theorem (Theorem 1.54) implies that L must be regular, so (a) is
incorrect.

• Because L must be regular, Corollary 2.32 ensures L is also context-free, so
(c) is correct and (b) is incorrect.

• For the language L with regular expression ab∗, we have that x = ab ∈ L and
y = abb ∈ L, but xy = ababb 6∈ L, so L is not closed under concatenation,
making (d) incorrect.

1.9. Answer: (b).

• HW 4, problem 5c, shows that (a) is incorrect, and that (b) is correct.

• Slightly modifying the proof on slide 1-105 shows that the language L1 =
{ anbn | n ≥ 1 } is non-regular. Adding ε to L1 leads to the language L2 =
{ anbn | n ≥ 0 }, which is context-free (with CFG having rules S → aSb | ε),
so (c) is incorrect.

• Slightly modifying the proof on slide 2-96 shows that the language L1 =
{ anbncn | n ≥ 1 } is non-context-free, so it is also non-regular by Corollary
2.32. Adding ε to L1 leads to the language L2 = { anbncn | n ≥ 0 }, which is
non-context-free by the proof on slide 2-96, so (d) is incorrect.

1.10. Answer: (h).

• The regular expression 01∗0 cannot generate the string 11 ∈ L, so (i) is
incorrect.

• The regular expression 0(0∪1)∗0∪1(0∪1)∗1 cannot generate the string 1 ∈ L,
so (ii) is incorrect.

• The regular expression (0∪1)(0∪1)∗(0∪1) cannot generate the string 1 ∈ L,
so (iii) is incorrect.

2. (a) (a ∪ b)∗(a ∪ b)(a ∪ b)a(a ∪ b)
There are infinitely many other correct regular expressions for this language, such
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as (a ∪ b)(a ∪ b)∗(a ∪ b)a(a ∪ b)
or (a ∪ b)(a ∪ b)(a ∪ b)∗a(a ∪ b)
or a(a ∪ b)(a ∪ b)∗a(a ∪ b) ∪ b(a ∪ b)(a ∪ b)∗a(a ∪ b) or . . .

(b) (aa ∪ b)b∗aa∗. Another regular expression is (aab∗ ∪ bb∗)aa∗. There are infinitely
many other correct regular expressions for this language.

(c) After one step, the CFG is then

S0 → S

S → 1SA0A | 1S0A | 1SA0 | 1S0 | 0AS1S | 0S1S | ε

A → 10S1

(d) (Homework 2, problem 5.) Given a DFA M1 = (Q1,Σ, δ1, q1, F1) for language A1

and a DFA M2 = (Q2,Σ, δ2, q2, F2) for language A2, the language A3 = A1 ∩ A2

is recognized by the DFA M3 = (Q3,Σ, δ3, q3, F3), with

• Q3 = Q1 ×Q2,

• δ3((x, y), ℓ) = (δ1(x, ℓ), δ2(y, ℓ)) for (x, y) ∈ Q3 and ℓ ∈ Σ,

• q3 = (q1, q2), and

• F3 = F1 × F2.

3. A DFA for C is below:
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2, 4
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4. (a) G = (V,Σ, R, S) with set of variables V = {S,X}, where S is the start variable;
set of terminals Σ = {a, b, c}; and rules

S → bSc | X

X → bXa | ε

There are infinitely many other correct CFGs for L.
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(b) There are infinitely many correct PDAs for L. Here is one:

q1 q2 q3 q4 q5
ε, ε → $

b, ε → x

ε, ε → ε

a, x → ε

ε, ε → ε

c, x → ε

ε, $ → ε

In the above PDA, state q2 pushes an x for each b read, state q3 pops an x for
each a read, and state q4 pops an x for each c read to match the c’s and a’s with
the b’s.

Another approach uses the algorithm from Lemma 2.21 to convert the CFG in
part (a) into a PDA.

q0 q1 q2

q4

q5 q6

q7

q3
ε, ε → $ ε, ε → S

ε, S → c

ε, ε → S
ε, ε → b ε, X → a

ε, ε → X

ε, ε → b

ε, S → X

ε, X → ε

a, a → ε

b, b → ε

c, c → ε

ε, $ → ε

In the second PDA,

• The path q2 → q4 → q5 → q2 corresponds to the rule S → bSc, where the
symbols on the right side of the rule are pushed in reverse order.

• The path q2 → q6 → q7 → q2 corresponds to the rule X → bXa, where the
symbols on the right side of the rule are pushed in reverse order.

5. Language A = { biajck | i, j, k ≥ 0 and i = j + k } is nonregular. We prove this by
contradiction. Suppose that A is a regular language. Let p be the “pumping length”

4



of the Pumping Lemma. Consider the string s = bpap. Note that s ∈ A because
s = biajck with i = j = p and k = 0. Also, we have that |s| = 2p > p, so the Pumping
Lemma will hold. Thus, there exist strings x, y, and z such that s = xyz and

(a) xyiz ∈ A for each i ≥ 0,

(b) |y| > 0,

(c) |xy| ≤ p.

Because the first p symbols of s are all b’s, the third property implies that x and y

consist only of b’s. So z will be the rest of the first set of b’s (possibly none), followed
by ap. The second property states that |y| > 0, so y has at least one b. More precisely,
we can then say that

x = bj for some j ≥ 0,

y = bk for some k ≥ 1,

z = bmap for some m ≥ 0.

Because
bpap = s = xyz = bjbkbmap = bj+k+map,

we must have that
j + k +m = p and k ≥ 1.

The first property implies that the pumped string xy2z ∈ A, but

xy2z = bjbkbkbmap

= bp+kap 6∈ A

because the number of b’s does not equal the sum of the number of a’s and c’s. This
contradicts the first property of the pumping lemma. Therefore, A is a nonregular
language.

Another possible string that will result in a contradiction is s = b2papcp ∈ A, where
|s| = 4p > p. Then splitting s = xyz satisfying properties (ii) and (iii) of the pumping
lemma will lead to

x = bj for some j ≥ 0,

y = bk for some k ≥ 1,

z = bm+papcp for some m ≥ 0,

where j + k +m = p. Property (i) of the pumping lemma states that xyyz ∈ A, but
xyyz = b2p+kapcp 6∈ A because k ≥ 1, giving a contradiction.
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