CS 341-007, Fall 2022, Face-to-Face Section Solutions for Midterm 1

1. Multiple choice.
1.1. Answer: (c).

- HW 6, problem 2a, shows that the class of CFLs is not closed under intersection, so (a) is incorrect.
- HW 6, problem 2b, shows that the class of CFLs is not closed under complementation, so (b) is incorrect.
- HW 5, problem 3b, shows that (c) is correct.
- The language $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not context-free by slide 2-96, so not all languages are context-free, so (d) is incorrect.
- By Corollary 2.32, every regular language is also context-free, so (e) is incorrect.
1.2. Answer: (a).
- By Corollary 2.32, every regular language (even if it is infinite) is also contextfree, so (a) is correct, and (b) and (c) are incorrect.
- Theorem 1.25 implies that $L_{1} \cup L_{2}$ must be regular, so (d) is incorrect.
1.3. Answer: (c).
- The languages $L_{1}=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ and $L_{2}=\left\{b^{n} a^{n} c^{n} \mid n \geq 0\right\}$ are infinite, non-regular languages, with $L_{1} \cap L_{2}=\{\varepsilon\}$, which is regular because it is finite (slide 1-95), making (a) incorrect.
- If $L_{1}=L_{2}=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$, then $L_{1} \cap L_{2}=L_{1}$, which is non-regular and non-context-free, so (b) and (d) are incorrect.
1.4. Answer: (e).
- The language $L_{1}=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is infinite, not regular, and not contextfree, so (a), (b), and (c) are incorrect.
- For the same language L_{1}, note that $x=a b c \in L_{1}$ and $y=a a b b c c \in L_{1}$, but $x y=a b c a a b b c c \notin L_{1}$, so L_{1} is not closed under Kleene star, making (d) incorrect.
1.5. Answer: (e).
- The regular expression $b^{*} a^{*}$ generates the string $b b a \notin A$, so (a) is incorrect.
- The regular expression $(b a)^{*}$ generates the string $b a b a \not \notin A$, so (b) is incorrect.
- The given CFG G in part (c) has language $L(G)=\emptyset$ (i.e., no strings at all) because derivations can never terminate: $S \Rightarrow b S a \Rightarrow b b S a a \Rightarrow b b b S a a a \Rightarrow$ \cdots, so (c) is incorrect.
- The language A has CFG with rules $S \rightarrow b S a \mid \varepsilon$, so (d) is incorrect.
1.6. Answer: (d).
- The language $A=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is non-context-free and infinite, so (a) is incorrect. In fact, if A is non-context-free language, A must be infinite.
- $A=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is also nonregular, so (b) is incorrect.
- $A=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is non-context-free, and $a b c \in A$ but $(a b c)^{\mathcal{R}}=c b a \notin A$, so A is not closed under reversals, making (c) incorrect.
1.7. Answer: (c).
- By Theorem 2.20, a language is context-free if and only if some PDA recognizes it, so we can answer the question by considering CFLs. The language $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is context-free but infinite, so (a) is incorrect.
- The language $\{\varepsilon\}$ is finite, so it is regular (slide 1-95), and Corollary 2.32 ensures it is also context-free, so (b) is incorrect.
- Theorem 2.9 guarantees that a context-free language has a CFG in Chomsky normal form, so (d) is incorrect.
1.8. Answer: (c).
- Kleene's Theorem (Theorem 1.54) implies that L must be regular, so (a) is incorrect.
- Because L must be regular, Corollary 2.32 ensures L is also context-free, so (c) is correct and (b) is incorrect.
- For the language L with regular expression $a b^{*}$, we have that $x=a b \in L$ and $y=a b b \in L$, but $x y=a b a b b \notin L$, so L is not closed under concatenation, making (d) incorrect.
1.9. Answer: (b).
- HW 4, problem 5c, shows that (a) is incorrect, and that (b) is correct.
- Slightly modifying the proof on slide 1-105 shows that the language $L_{1}=$ $\left\{a^{n} b^{n} \mid n \geq 1\right\}$ is non-regular. Adding ε to L_{1} leads to the language $L_{2}=$ $\left\{a^{n} b^{n} \mid n \geq 0\right\}$, which is context-free (with CFG having rules $S \rightarrow a S b \mid \varepsilon$), so (c) is incorrect.
- Slightly modifying the proof on slide 2-96 shows that the language $L_{1}=$ $\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$ is non-context-free, so it is also non-regular by Corollary 2.32. Adding ε to L_{1} leads to the language $L_{2}=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$, which is non-context-free by the proof on slide $2-96$, so (d) is incorrect.
1.10. Answer: (h).
- The regular expression $01^{*} 0$ cannot generate the string $11 \in L$, so (i) is incorrect.
- The regular expression $0(0 \cup 1)^{*} 0 \cup 1(0 \cup 1)^{*} 1$ cannot generate the string $1 \in L$, so (ii) is incorrect.
- The regular expression $(0 \cup 1)(0 \cup 1)^{*}(0 \cup 1)$ cannot generate the string $1 \in L$, so (iii) is incorrect.

2. (a) $(a \cup b)^{*}(a \cup b)(a \cup b) a(a \cup b)$

There are infinitely many other correct regular expressions for this language, such
as $(a \cup b)(a \cup b)^{*}(a \cup b) a(a \cup b)$
or $(a \cup b)(a \cup b)(a \cup b)^{*} a(a \cup b)$
or $a(a \cup b)(a \cup b)^{*} a(a \cup b) \cup b(a \cup b)(a \cup b)^{*} a(a \cup b)$ or \ldots
(b) $(a a \cup b) b^{*} a a^{*}$. Another regular expression is $\left(a a b^{*} \cup b b^{*}\right) a a^{*}$. There are infinitely many other correct regular expressions for this language.
(c) After one step, the CFG is then

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow 1 S A 0 A|1 S 0 A| 1 S A 0|1 S 0| 0 A S 1 S|0 S 1 S| \varepsilon \\
A & \rightarrow 10 S 1
\end{aligned}
$$

(d) (Homework 2, problem 5.) Given a DFA $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ for language A_{1} and a DFA $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ for language A_{2}, the language $A_{3}=A_{1} \cap A_{2}$ is recognized by the DFA $M_{3}=\left(Q_{3}, \Sigma, \delta_{3}, q_{3}, F_{3}\right)$, with

- $Q_{3}=Q_{1} \times Q_{2}$,
- $\delta_{3}((x, y), \ell)=\left(\delta_{1}(x, \ell), \delta_{2}(y, \ell)\right)$ for $(x, y) \in Q_{3}$ and $\ell \in \Sigma$,
- $q_{3}=\left(q_{1}, q_{2}\right)$, and
- $F_{3}=F_{1} \times F_{2}$.

3. A DFA for C is below:

4. (a) $G=(V, \Sigma, R, S)$ with set of variables $V=\{S, X\}$, where S is the start variable; set of terminals $\Sigma=\{a, b, c\}$; and rules

$$
\begin{aligned}
S & \rightarrow b S c \mid X \\
X & \rightarrow b X a \mid \varepsilon
\end{aligned}
$$

There are infinitely many other correct CFGs for L.
(b) There are infinitely many correct PDAs for L. Here is one:

In the above PDA, state q_{2} pushes an x for each b read, state q_{3} pops an x for each a read, and state q_{4} pops an x for each c read to match the c 's and a 's with the b 's.
Another approach uses the algorithm from Lemma 2.21 to convert the CFG in part (a) into a PDA.

In the second PDA,

- The path $q_{2} \rightarrow q_{4} \rightarrow q_{5} \rightarrow q_{2}$ corresponds to the rule $S \rightarrow b S c$, where the symbols on the right side of the rule are pushed in reverse order.
- The path $q_{2} \rightarrow q_{6} \rightarrow q_{7} \rightarrow q_{2}$ corresponds to the rule $X \rightarrow b X a$, where the symbols on the right side of the rule are pushed in reverse order.

5. Language $A=\left\{b^{i} a^{j} c^{k} \mid i, j, k \geq 0\right.$ and $\left.i=j+k\right\}$ is nonregular. We prove this by contradiction. Suppose that A is a regular language. Let p be the "pumping length"
of the Pumping Lemma. Consider the string $s=b^{p} a^{p}$. Note that $s \in A$ because $s=b^{i} a^{j} c^{k}$ with $i=j=p$ and $k=0$. Also, we have that $|s|=2 p>p$, so the Pumping Lemma will hold. Thus, there exist strings x, y, and z such that $s=x y z$ and
(a) $x y^{i} z \in A$ for each $i \geq 0$,
(b) $|y|>0$,
(c) $|x y| \leq p$.

Because the first p symbols of s are all b 's, the third property implies that x and y consist only of b 's. So z will be the rest of the first set of b 's (possibly none), followed by a^{p}. The second property states that $|y|>0$, so y has at least one b. More precisely, we can then say that

$$
\begin{aligned}
& x=b^{j} \text { for some } j \geq 0 \\
& y=b^{k} \text { for some } k \geq 1 \\
& z=b^{m} a^{p} \text { for some } m \geq 0
\end{aligned}
$$

Because

$$
b^{p} a^{p}=s=x y z=b^{j} b^{k} b^{m} a^{p}=b^{j+k+m} a^{p},
$$

we must have that

$$
j+k+m=p \quad \text { and } \quad k \geq 1
$$

The first property implies that the pumped string $x y^{2} z \in A$, but

$$
\begin{aligned}
x y^{2} z & =b^{j} b^{k} b^{k} b^{m} a^{p} \\
& =b^{p+k} a^{p} \notin A
\end{aligned}
$$

because the number of b 's does not equal the sum of the number of a 's and c 's. This contradicts the first property of the pumping lemma. Therefore, A is a nonregular language.
Another possible string that will result in a contradiction is $s=b^{2 p} a^{p} c^{p} \in A$, where $|s|=4 p>p$. Then splitting $s=x y z$ satisfying properties (ii) and (iii) of the pumping lemma will lead to

$$
\begin{aligned}
& x=b^{j} \text { for some } j \geq 0 \\
& y=b^{k} \text { for some } k \geq 1 \\
& z=b^{m+p} a^{p} c^{p} \text { for some } m \geq 0,
\end{aligned}
$$

where $j+k+m=p$. Property (i) of the pumping lemma states that xyyz $\in A$, but $x y y z=b^{2 p+k} a^{p} c^{p} \notin A$ because $k \geq 1$, giving a contradiction.

