CS 341-007, Fall 2022, Face-to-Face Section
Solutions for Midterm 1

1. Multiple choice.

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

Answer: (c).

e HW 6, problem 2a, shows that the class of CFLs is not closed under intersec-
tion, so (a) is incorrect.

e HW 6, problem 2b, shows that the class of CFLs is not closed under comple-
mentation, so (b) is incorrect.

e HW 5, problem 3b, shows that (c) is correct.

e The language {a™b"c" | n > 0} is not context-free by slide 2-96, so not all
languages are context-free, so (d) is incorrect.

e By Corollary 2.32, every regular language is also context-free, so (e) is incor-
rect.

Answer: (a).

e By Corollary 2.32, every regular language (even if it is infinite) is also context-
free, so (a) is correct, and (b) and (c) are incorrect.

e Theorem 1.25 implies that L; U Ly must be regular, so (d) is incorrect.

Answer: (c).
e The languages Ly = {a™"c” | n > 0} and Ly = {b"a"c" | n > 0} are
infinite, non-regular languages, with L; N Ly = {e}, which is regular because
it is finite (slide 1-95), making (a) incorrect.

o If Ly =Ly ={a"b"c" |n >0}, then Ly N Ly = Ly, which is non-regular and

non-context-free, so (b) and (d) are incorrect.
Answer: (e).

e The language L; = {a"b"¢" | n > 0} is infinite, not regular, and not context-
free, so (a), (b), and (c) are incorrect.

e For the same language L, note that x = abc € L; and y = aabbcc € L,
but zy = abcaabbec ¢ Ly, so Ly is not closed under Kleene star, making (d)
incorrect.

Answer: (e).

The regular expression b*a* generates the string bba € A, so (a) is incorrect.

The regular expression (ba)* generates the string baba ¢ A, so (b) is incorrect.
The given CFG G in part (c) has language L(G) = () (i.e., no strings at all)
because derivations can never terminate: S = bSa = bbSaa = bbbSaaa =
-++, 80 (c) is incorrect.

e The language A has CFG with rules S — bSa | ¢, so (d) is incorrect.
Answer: (d).

e The language A = {a"b"c” | n > 0} is non-context-free and infinite, so (a)
is incorrect. In fact, if A is non-context-free language, A must be infinite.

e A={a""c" | n >0} is also nonregular, so (b) is incorrect.

o A= {a""c" | n >0} is non-context-free, and abc € A but (abc)® = cba & A,
so A is not closed under reversals, making (c) incorrect.

1.7. Answer: (c).

e By Theorem 2.20, a language is context-free if and only if some PDA recog-
nizes it, so we can answer the question by considering CFLs. The language
{a"" | n > 0} is context-free but infinite, so (a) is incorrect.

e The language {e} is finite, so it is regular (slide 1-95), and Corollary 2.32
ensures it is also context-free, so (b) is incorrect.

e Theorem 2.9 guarantees that a context-free language has a CFG in Chomsky
normal form, so (d) is incorrect.

1.8. Answer: (c).

e Kleene’s Theorem (Theorem 1.54) implies that L must be regular, so (a) is
incorrect.

e Because L must be regular, Corollary 2.32 ensures L is also context-free, so
(¢) is correct and (b) is incorrect.

e For the language L with regular expression ab*, we have that x = ab € L and
y = abb € L, but xy = ababb ¢ L, so L is not closed under concatenation,
making (d) incorrect.

1.9. Answer: (b).
e HW 4, problem 5¢, shows that (a) is incorrect, and that (b) is correct.

e Slightly modifying the proof on slide 1-105 shows that the language L, =
{a™™ | n > 1} is non-regular. Adding ¢ to L; leads to the language Ly =
{a™" | n > 0}, which is context-free (with CFG having rules S — aSb |),
so (c) is incorrect.

e Slightly modifying the proof on slide 2-96 shows that the language L, =
{a""c™ | n > 1} is non-context-free, so it is also non-regular by Corollary
2.32. Adding ¢ to L; leads to the language Lo = {a™b"c" | n > 0}, which is
non-context-free by the proof on slide 2-96, so (d) is incorrect.

1.10. Answer: (h).

e The regular expression 01*0 cannot generate the string 11 € L, so (i) is
incorrect.

e The regular expression 0(0U1)*0U1(0U1)*1 cannot generate the string 1 € L,
so (ii) is incorrect.

e The regular expression (0U1)(0U1)*(0U1) cannot generate the string 1 € L,
so (iii) is incorrect.

2. (a) (aUb)*(aUb)(aUb)a(aUb)
There are infinitely many other correct regular expressions for this language, such

2

as (aUb)(aUb) (aUb)a(aUb)
or (aUb)(aUb)(aUb)*alaUb)
or a(aUb)(aUb)*a(aUb)UblaUb)(aUb)*a(aUb) or ...
(b) (aa Ub)b*aa*. Another regular expression is (aab* U bb*)aa*. There are infinitely
many other correct regular expressions for this language.

(c) After one step, the CFG is then

So — S
S — 15A0A | 150A | 15A0 | 150 | 0AS1S | 0S1S | €
A — 1051

(d) (Homework 2, problem 5.) Given a DFA M; = (@4, %, 01, q1, F}) for language A,
and a DFA My = (Q2, X, 02, qo, F3) for language A, the language A3 = A; N A
is recognized by the DFA M; = (Q3, %, d3, g3, F3), with

o ()3 =Q1 X Qo

e 03((z,y),0) = (61(z,), 2(y, £)) for (z,y) € Qs and £ € X,
® 3= (q1,q2), and

° F3 = F1 X Fg.

3. A DFA for C is below:

4. (a) G =(V,X,R,S) with set of variables V' = {S, X'}, where S is the start variable;
set of terminals ¥ = {a, b, c}; and rules

S — bSc| X
X — bXale

There are infinitely many other correct CFGs for L.

3

(b) There are infinitely many correct PDAs for L. Here is one:

@5,5—>$ @575%5 @5,5%5 @5,$—>5

be > x a, T — € c, T — €

In the above PDA, state ¢o pushes an z for each b read, state g3 pops an x for
each a read, and state ¢4 pops an z for each ¢ read to match the ¢’s and a’s with
the 0’s.

Another approach uses the algorithm from Lemma 2.21 to convert the CFG in
part (a) into a PDA.

e, S5 —=>X
e, X —e¢
a, a— ¢
b,b— ¢
¢, c—¢€

In the second PDA,

e The path ¢ — g4 — ¢5 — ¢o corresponds to the rule S — bSc, where the
symbols on the right side of the rule are pushed in reverse order.

e The path ¢ — ¢¢ — g7 — @2 corresponds to the rule X — bXa, where the
symbols on the right side of the rule are pushed in reverse order.

5. Language A = {bia’c* | i,5,k > 0 andi = j + k} is nonregular. We prove this by
contradiction. Suppose that A is a regular language. Let p be the “pumping length”

of the Pumping Lemma. Consider the string s = b’a?. Note that s € A because
s =bla/c* with i = j = p and k = 0. Also, we have that |s| = 2p > p, so the Pumping
Lemma will hold. Thus, there exist strings x, y, and z such that s = zyz and

(a) zy'z € A for each i > 0,
(b) [yl >0,
(c) |lzyl < p.

Because the first p symbols of s are all b’s, the third property implies that x and y
consist only of b’s. So z will be the rest of the first set of b’s (possibly none), followed
by a?. The second property states that |y| > 0, so y has at least one b. More precisely,
we can then say that

x = V for some j >0,
= b* for some k > 1,
z = b"a? for some m > 0.

Because
WaP = s = zyz = B bFbma? = YHEmep,
we must have that

j+k+m=p and k>1.
The first property implies that the pumped string zy?z € A, but

ry’z = Vubma?
WhaP & A

because the number of b’s does not equal the sum of the number of a’s and ¢’s. This
contradicts the first property of the pumping lemma. Therefore, A is a nonregular
language.

Another possible string that will result in a contradiction is s = b*?aPc? € A, where
|s| = 4p > p. Then splitting s = xyz satisfying properties (ii) and (iii) of the pumping
lemma will lead to

= V for some j > 0,
= b* for some k > 1,

2 = b"PgPcP for some m > 0,

where j + k +m = p. Property (i) of the pumping lemma states that xyyz € A, but
ryyz = b¥PRaPcP & A because k > 1, giving a contradiction.

