
CS 341-007, Fall 2023, Hybrid Section

Solutions for Midterm 1

1. Multiple choice.

1.1. Answer: (d).
Because A is recognized by an NFA, A must be regular by Corollary 1.4. Because
B has a regular expression, B must be regular by Kleene’s theorem (Theorem
1.54).

• We must then have that A◦B is regular by Theorem 1.47, so (a) is incorrect.

• We must also then have that A ∪ B is regular by Theorem 1.45, so A ∪ B is
recognized by a DFA, making (b) incorrect.

• By the theorem on slide 1-34, A ∩ B must be regular, so Corollary 2.32
ensures that A∩B is also context-free, so (c) is incorrect. Also, (d) is correct
by Theorem 2.20.

1.2. Answer: (c).

• The regular expression b∗a∗ generates the string bba 6∈ A, so (a) is incorrect.

• The regular expression (ba)∗ generates the string baba 6∈ A, so (b) is incorrect.

• The language A has CFG with rules S → bSa | ε, so (d) is incorrect.

1.3. Answer: (b).

• Suppose that A has regular expression (aa)∗a, so A is the set of strings of a’s
of odd length. Because A has a regular expression, it is regular by Kleene’s
Theorem. Note that a ∈ A and aaa ∈ A, but their concatenation aaaa 6∈ A,
so A is not closed under concatenation, showing that (a) is incorrect, so (d) is
also incorrect. (While this example shows that a particular regular language
may not be closed under concatenation, the class of regular languages is

closed under concatenation.) Also, the same language A is infinite, showing
that (c) is incorrect.

• Corollary 2.32 shows that A must be context-free, so (b) is correct.

1.4. Answer: (c).

• HW 6, problem 2a, shows that the class of CFLs is not closed under intersec-
tion, so (a) is incorrect.

• HW 6, problem 2b, shows that the class of CFLs is not closed under comple-
mentation, so (b) is incorrect.

• HW 5, problem 3b, shows that (c) is correct.

• The language { anbncn | n ≥ 0 } is not context-free by slide 2-96, so not all
languages are context-free, making (d) incorrect.

• By Corollary 2.32, every regular language is also context-free, so (e) is incor-
rect.

1.5. Answer: (c).

1



• By Theorem 2.20, a language is context-free if and only if some PDA recog-
nizes it, so we can answer the question by considering CFLs. The language
{ anbn | n ≥ 0 } is context-free but infinite, so (a) is incorrect.

• The language {ε} is finite, so it is regular (slide 1-95), and Corollary 2.32
ensures it is also context-free, so (b) is incorrect. Combining this item and
the previous shows that choice (c) is correct.

• Theorem 2.9 guarantees that a context-free language has a CFG in Chomsky
normal form, so (d) is incorrect.

1.6. Answer: (e).

• Suppose that A = ∅ for Σ = {0, 1}, so A is regular because it has a regular
expression ∅. For every language B, we always have that A ⊆ B, and we know
that there are languages B that are nonregular, regular, non-context-free, and
context-free, showing that (a), (b), (c), and (d) are all incorrect.

1.7. Answer: (a)

• Suppose that w ∈ A with w 6= ε. Then wn ∈ A∗ for each n ≥ 0, where
wi 6= wj for each i 6= j because w 6= ε. Thus, A∗ is infinite, so (a) is correct.

• To show that (b), (c), and (d) are incorrect, consider A = {b}. Then A◦A =
{bb} 6= A, so (b) is incorrect. Also, A+ = { bn | n ≥ 1 } 6= { bn | n ≥ 0 } = A∗

because ε 6∈ A+ but ε ∈ A∗, so (c) is incorrect. Note that A∗ 6= A, so (d) is
incorrect.

1.8. Answer: (c).

• ε 6∈ ∅, so (a) is incorrect.

• ∅ is the empty set, and ε is the empty string, so they aren’t equal, making
(b) incorrect.

• ∅∗ = {ε} making (c) correct, and (d) incorrect.

1.9. Answer: (c).

• The regular expression (0∪ 1)∗(01∪ 10)∪ ε cannot generate the string 1 ∈ L,
so (i) is incorrect.

• The regular expression (0∪1)∗(ε∪0∪1∪01∪10) generates the string 00 6∈ L,
so (ii) is incorrect.

• A correct regular expression is (0∪1)∗(01∪10) ∪ 0 ∪ 1 ∪ ε, which is essentially
from HW 3, problem 4e.

1.10. Answer: (d).

• For the alphabet Σ = {0, 1}, consider the language A = { 0n1n | n ≥ 0 } ⊆ Σ∗,
and slide 1-105 proves A is nonregular. Define B as the complement of A, so
B = A = Σ∗−A, which must also be nonregular. To see why, suppose that B
is regular; then B = Σ∗−B is regular because the class of regular languages is
closed under complementation (Homework 2, problem 3). But B = A, making
A regular, which is a contradiction because A is nonregular. Now A∪B = Σ∗,
which is regular by Kleene’s theorem since it has a regular expression, so (d)
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is correct, and (c) is incorrect. Also, for this example, A ∩ B = ∅, which is
regular by slide 1-95 because ∅ is finite, so (a) is incorrect.

• To show that choice (b) is incorrect, suppose that A and B are nonregular.
Now A must be infinite because if it were finite, then it would be regular by
slide 1-95. We always have that A ⊆ A ∪ B, so |A ∪ B| ≥ |A| = ∞, proving
that A ∪B must be infinite.

2. (a) ((a ∪ b)(a ∪ b)(a ∪ b))∗(a ∪ b)(a ∪ b)a.
There are infinitely many other correct regular expressions for the language, e.g.,
((a ∪ b)(a ∪ b)(a ∪ b))∗(a∪ b)(a ∪ b)aa ∪ ((a ∪ b)(a ∪ b)(a ∪ b))∗(a ∪ b)(a ∪ b)ba, or
aaa ∪ aba ∪ baa ∪ bba ∪ ((a ∪ b)(a ∪ b)(a ∪ b))∗(a ∪ b)(a ∪ b)a, or . . . .
Some incorrect answers include

• ((a ∪ b)(a ∪ b)a)∗, which generates ε 6∈ A and cannot generate aabaaa ∈ A;

• ((a ∪ b)(a ∪ b)(a ∪ b))∗a, which generates a 6∈ A and cannot generate a6 ∈ A;

• (aaa ∪ bbb)∗(aaa ∪ aba ∪ baa ∪ bba), which can’t generate abaaba ∈ A;

• (a ∪ b)na with n = 3k − 1 for some k ≥ 1, which is not a regular expression.

(b) (ba∗a ∪ ε)b∗(a ∪ ε)b∗, or (ba∗ab∗ ∪ b∗)(a ∪ ε)b∗, or . . . . There are infinitely many
other correct regular expressions for this language.

(c) As on slide 1-63 of the notes, if A1 is defined by NFA N1 and A2 is defined by
NFA N2, then an NFA N for A3 = A∗

2 is as below:

N2

N

ε

εε

(d) (Homework 5, problem 3a.) A CFG for A3 = A2 ∪A1 is G3 = (V3,Σ, R3, S3) with
V3 = V1 ∪ V2 ∪ {S3}, S3 6∈ V1 ∪ V2, and R3 = R1 ∪ R2 ∪ {S3 → S1 | S2 }.

3. A DFA for C is below:
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4. (a) For Σ = {a, b}, we have the language

L = {w ∈ Σ∗ | |w| is odd, and the middle symbol of w is b },

which is essentially the same as in HW 5, problem 1c. A CFG G = (V,Σ, R, S)
for L has V = {S} with S the starting variable, Σ = {a, b}, and rules

S → aSa | aSb | bSa | bSb | b

There are infinitely many other correct CFGs for L.

(b) There are infinitely many correct PDAs for L. Here is one, which we will call M1:

q1 q2 q3 q4
ε, ε → $

a, ε → x

b, ε → x

b, ε → ε

a, x → ε

b, x → ε

ε, $ → ε

Each string w has length n = 2k − 1 for some k ≥ 1, where the middle symbol
of w is in position k. The number of symbols before the middle has to equal the
number of symbols after the middle, but the language doesn’t require matching
specific symbols in corresponding positions before and after the middle. In the
above PDA

• state q2 pushes an x for each symbol read before the middle,

• the transition from q2 to q3 guesses that it is now reading the middle symbol
in w, which has to be b, without matching it to anything,

• state q3 reads in the symbols after the middle, popping an x for each one,
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• the transition from state q3 to q4 pops $ to make sure the stack is empty.

Another PDA M2 for L is as follows:

q1 q2 q3 q4
ε, ε → $

a, ε → a

b, ε → b

b, ε → ε

a, a → ε

a, b → ε

b, a → ε

b, b → ε

ε, $ → ε

For M2, looping in state q2 pushes the same symbol onto the stack that is read.
But because strings in L don’t have to match symbols before and after the middle,
looping in state q3 can pop anything on each symbol read from Σ.

Another approach to build a PDA for L uses the algorithm from Lemma 2.21 to
convert the CFG in part (a) into a PDA, which we will call M3.

q0 q1

q2

q4

q5

q6

q7 q8

q9

q10

q11

q3
ε, ε → $

ε, ε → S

ε, S → a

ε, ε → S
ε, ε → a

ε, S → b

ε, ε → S

ε, ε → a

ε, S → a

ε, ε → S

ε, ε → b

ε, S → b

ε, ε → S
ε, ε → b

ε, S → b

a, a → ε

b, b → ε

ε, $ → ε

Note that

• The path q2 → q4 → q5 → q2 corresponds to the rule S → aSa, where the
symbols on the right side of the rule are pushed in reverse order.
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• The path q2 → q6 → q7 → q2 corresponds to the rule S → aSb, where the
symbols on the right side of the rule are pushed in reverse order.

• The path q2 → q8 → q9 → q2 corresponds to the rule S → bSa, where the
symbols on the right side of the rule are pushed in reverse order.

• The path q2 → q10 → q11 → q2 corresponds to the rule S → bSb, where the
symbols on the right side of the rule are pushed in reverse order.

5. For Σ = {a, b}, the language

L = {w ∈ Σ∗ | |w| is odd, and the middle symbol of w is b }

is nonregular. We prove this by contradiction. Suppose that A is a regular language.
Let p be the “pumping length” of the pumping lemma for regular languages. Consider
the string s = apbap, where s ∈ A because |s| = 2p+ 1 is odd, and the middle symbol
of s is b. Also, we have that |s| = 2p+ 1 ≥ p, so the pumping lemma will hold. Thus,
there exist strings x, y, and z such that s = xyz and

(a) xyiz ∈ A for each i ≥ 0,

(b) |y| > 0,

(c) |xy| ≤ p.

Because the first p symbols of s are all a’s, the third property implies that x and y

consist of only a’s. So z will be the rest of the first set of a’s (possibly none), followed
by bap. The second property states that |y| > 0, so y has at least one a. More precisely,
we can then say that

x = aj for some j ≥ 0,

y = ak for some k ≥ 1,

z = ambap for some m ≥ 0.

Because
apbap = s = xyz = ajakambap = aj+k+mbap,

we must have that
j + k +m = p and k ≥ 1.

The first property implies that the pumped string xy2z ∈ A, but

xy2z = ajakakambap

= ap+kbap 6∈ A.

To see why xy2z 6∈ A, there are two cases of y to consider to cover all possibilities:
either |y| is even or |y| is odd.

• If |y| is even, then xyyz has odd length because s = xyz has odd length since
s ∈ A, so s has a middle symbol. But because s = xyz = apbap, the middle
symbol of xyyz = ap+kbap is now to the left of b. Thus, the middle symbol is now
a, implying that xyyz 6∈ A.
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• If |y| is odd, then because s = xyz and |s| is odd (since s ∈ A), we must then
have that xyyz has even length, so xyyz 6∈ A.

Thus, both cases have that xy2z 6∈ A. Because the two cases cover all possibilities
for y and each violates property (i) of the pumping lemma, we get a contradiction.
Therefore, A is a nonregular language.
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