CS 341-009, Fall 2023, Hybrid Section Solutions for Midterm 1

1. Multiple choice.
1.1. Answer: (b).

- HW 6, problem 2a, shows that the class of CFLs is not closed under intersection, so (a) is incorrect.
- HW 5, problem 3c, shows that (b) is correct.
- HW 6, problem 2b, shows that the class of CFLs is not closed under complementation, so (c) is incorrect.
- The language $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not context-free by slide 2-96, so not all languages are context-free, so (d) is incorrect.
- By Corollary 2.32, every regular language is also context-free, so (e) is incorrect.
1.2. Answer: (c).
- The class of context-free languages is closed under union (Homework 5, problem 3a), so $B \cup C$ is context-free. Also, the class of context-free languages is closed under concatenation (Homework 5, problem 3b), ensuring that $A(B \cup C)$ is context-free, so (c) is correct.
- We know that the class of context-free languages is not closed under complementation (Homework 6, problem 2b), so there exists some context-free language D whose complement \bar{D} is not context-free. Also, let $B=C=\{\varepsilon\}$, which is finite, so B and C are regular (slide 1-95), making them also contextfree (Corollary 2.32). Thus, $B \cup C=\{\varepsilon\}$, and let $A=D$, so $\bar{A}(B \cup C)=$ $\bar{A}=\bar{D}$ is non-context free, making (a) incorrect.
- Let A be any regular language, so A is also context-free (Corollary 2.32). As A is regular, \bar{A} is also regular (Homework 2, problem 3), so \bar{A} is also contextfree (Corollary 2.32). The class of context free languages is closed under concatenation (Homework 5, problem 3b) and union (Homework 5, problem 3a), so in this case when A is regular, we have that $\bar{A}(B \cup C)$ is context-free, showing (b) is incorrect.
- For $\Sigma=\{a, b\}$, let A be the language of all strings over Σ that don't begin with a. Now A has regular expression $\varepsilon \cup b(a \cup b)^{*}$, so Kleene's Theorem implies that A is a regular language, making A also context-free (Corollary 2.32). Also, \bar{A} is the set of all strings over Σ that begin with a; e.g., $a \in \bar{A}$. Also, let $B=\{b\}$ and $C=\{b\}$, each of which are finite so also regular (slide 1-95) and context-free (Corollary 2.32). Also, $B \cup C=\{b\}$. Then, we have that $a b \in \bar{A}(B \cup C)$, but $a b \notin(B \cup C) \bar{A}$, making (d) incorrect.
1.3. Answer: (b).
- The regular expression $\left(10^{*} 1\right)^{*} \cup((0 \cup 1)(0 \cup 1))^{*}(0 \cup 1)$ cannot generate the string $0101 \in L$, so (i) is incorrect.
- The regular expression $((0 \cup 1)(0 \cup 1))^{*}(0 \cup 1) \cup\left(0^{*} 10^{*} 10^{*}\right)^{*}$ cannot generate the string $00 \in L$, so (iii) is incorrect.
- To understand the correctness of (ii), first express the language L as $L=$ $L_{1} \cup L_{2}$, where L_{1} is the language of strings in Σ^{*} of odd length, and L_{2} is the language of strings in Σ^{*} with an even number of 1 's. Thus, if we have a regular express R_{1} for L_{1} and a regular expression R_{2} for L_{2}, then a regular expression for $L=L_{1} \cup L_{2}$ is $R=R_{1} \cup R_{2}$. We can obtain regular expressions R_{1} and R_{2} by converting DFAs for L_{1} and L_{2} into regular expressions. A DFA M_{1} for L_{1} is

While we can use the algorithm in part of the proof of Kleene's theorem (Lemma 1.60) to convert the DFA M_{1} into a regular expression R_{1}, the DFA is simple enough to be able to analyze it directly to obtain R_{1}. Specifically, note that every string accepted by M_{1} has to be processed as follows:

- start in q_{1},
- loop from q_{1} back to q_{1} zero or more times,
- move from q_{1} to q_{2} and end in q_{2}.

Looping from q_{1} back to q_{1} corresponds to $(0 \cup 1)(0 \cup 1)$, so looping zero or more times yields $((0 \cup 1)(0 \cup 1))^{*}$. Moving from q_{1} to q_{2} happens on $(0 \cup 1)$. Thus, we get $R_{1}=((0 \cup 1)(0 \cup 1))^{*}(0 \cup 1)$.
A DFA M_{2} recognizing L_{2} is

To obtain a regular expression R_{2} corresponding M_{2}, note that every string accepted by M_{2} has to be processed as follows:

- start in q_{1},
- loop from q_{1} back to q_{1} zero or more times, and end in q_{1}.

Looping from q_{1} back to q_{1} requires 0 or $10^{*} 1$, which corresponds to $0 \cup 10^{*} 1=$ $10^{*} 1 \cup 0$, so looping zero or more times corresponds to $\left(10^{*} 1 \cup 0\right)^{*}$, Thus, we get $R_{2}=\left(10^{*} 1 \cup 0\right)^{*}$.
Putting this all together gives $R=R_{1} \cup R_{2}=R_{2} \cup R_{1}=\left(10^{*} 1 \cup 0\right)^{*} \cup((0 \cup$ 1) $(0 \cup 1))^{*}(0 \cup 1)$.
1.4. Answer: (d).

- Consider $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$, which is nonregular (slide 1-105). Let $C=$
$\left\{0^{2 n+1} 1^{2 n+1} \mid n \geq 0\right\}$, so C is the set of strings in A with an odd number of 0 s followed by exactly the same number of 1 s , and C is infinite. Now let $B=A-C=\left\{0^{2 n} 1^{2 n} \mid n \geq 0\right\}$, so B is the set of strings in A with an even number of 0 s followed by exactly the same number of 1 s . We can show that B is nonregular by the pumping lemma, as follows. Suppose that B is regular, and consider $s=0^{2 p} 1^{2 p} \in B$, where p is the pumping length. Note that $|s|=4 p \geq p$, so the conclusions of the pumping lemma must hold. Splitting the string $s=x y z$ as in the pumping lemma leads to $x=0^{j}$ for some $j \geq 0, y=0^{k}$ for some $k \geq 1$, and $z=0^{m} 0^{p} 1^{2 p}$ for some $m \geq 0$, where $j+k+m=p$. But the pumped string $x y y z=0^{j} 0^{k} 0^{k} 0^{m} 0^{p} 1^{2 p}=0^{2 p+k} 1^{2 p} \notin B$, which is a contradiction. Thus, B is nonregular, showing (a) is incorrect.
- Consider $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$, which is nonregular (slide 1-105), and let $C=A$, which is infinite. Then $B=A-C=\emptyset$, which is regular (B has regular expression \emptyset, so B is regular by Kleene's theorem), so (b) is incorrect. Also, B then is also context-free (Corollary 2.32), so (c) is incorrect.
1.5. Answer: (b).
- The language A with regular expression b^{*} is infinite and regular, so (a) is incorrect.
- Corollary 2.32 shows that (b) is correct.
- Consider the language A with regular expression $a^{*} b^{*}$. Then $a a b \in A$ and $a b b \in A$, but their concatenation $a a b a b b \notin A$, so (c) is incorrect. While the class of regular languages is closed under concatenation, an individual regular language may not be closed under concatenation, as the example shows.
1.6. Answer: (c).
- By Theorem 2.20, a language is context-free if and only if some PDA recognizes it, so we can answer the question by considering CFLs. The language $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is context-free but infinite, so (a) is incorrect.
- The language $\{\varepsilon\}$ is finite, so it is regular (slide 1-95), and Corollary 2.32 ensures it is also context-free, so (b) is incorrect.
- By Theorem 2.20, a language is context-free if and only if some PDA recognizes it, and Theorem 2.9 then guarantees that the language has a CFG in Chomsky normal form, so (d) is incorrect.
1.7. Answer: (c).
- Kleene's Theorem (Theorem 1.54) implies that L must be regular, so (a) is incorrect.
- Because L must be regular, Corollary 2.32 ensures L is also context-free, so (c) is correct and (b) is incorrect.
- For the language L with regular expression $a b^{*}$, we have that $x=a b \in L$ but $x^{\mathcal{R}}=b a \notin L$, so L is not closed under reversal, making (d) incorrect.
1.8. Answer: (c).
- The languages $L_{1}=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ and $L_{2}=\left\{b^{n} a^{n} c^{n} \mid n \geq 0\right\}$ are
non-context-free languages (slide 2-96), with $L_{1} \cap L_{2}=\{\varepsilon\}$, which is regular because it is finite (slide 1-95). Thus, the intersection is also context-free by Corollary 2.32, making (a) incorrect.
- If $L_{1}=L_{2}=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$, then $L_{1} \cap L_{2}=L_{1}$, which is non-regular and non-context-free, so (b) and (d) are incorrect.
- The previous two examples show that (c) is correct.
1.9. Answer: (e).
- Consider the language $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$, which we know is nonregular (slide 1-105). Now let $L=A^{*}$, which we can prove is also nonregular by the pumping lemma, which shows that (a) is incorrect. For an outline of the proof that L is nonregular, suppose that L is regular, and consider the string $s=0^{p} 1^{p} \in L$, where p is the pumping length. Note that $|s|=2 p \geq p$, so the conclusions of the pumping lemma will hold. Thus, we can write $s=x y z$ with $x=0^{j}$ for $j \geq 0, y=0^{k}$ for $k \geq 1$, and $z=0^{m} 1^{p}$ for $m \geq 0$, where $j+k+m=p$. But the pumped string $x y y z=0^{p+k} 1^{p}$ cannot be written as a concatenation of zero of more strings from A. This contradicts the pumping lemma so L is nonregular, showing that (a) is incorrect. Also, let $B=A$, so $A \cap B=A$, which is nonregular, so (c) is also incorrect.
- For the same language $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$, let $B=\{\varepsilon\}$, so $A \circ B=A$, which we know is nonregular. Thus, (b) is incorrect.
1.10. Answer: (d).
- HW 6, problem 4, shows that A is non-context-free, so (d) is correct.
- Because A is non-context-free, Theorem 2.20 shows that A cannot have a PDA, making (c) incorrect.
- Also, A being non-context-free implies that A is also not regular (Corollary 2.32), so (a) and (b) are incorrect. We can see that the regular expression $(00)^{*}(111)^{*}(0)^{*}$ in (a) is wrong because it generates the string $00 \notin A$.

2. (a) $((a \cup b)(a \cup b))^{*}(a \cup b) b$.

There are infinitely many other correct regular expressions for the language, e.g., $((a \cup b)(a \cup b))^{*} a b \cup((a \cup b)(a \cup b))^{*} b b$, or
$a b \cup b b \cup((a \cup b)(a \cup b))^{*}(a \cup b) b$, or \ldots
Some incorrect answers include

- $((a \cup b) b)^{*}$, which generates $\varepsilon \notin A$ and cannot generate $a a a b \in A$;
- $((a \cup b)(a \cup b)(a \cup b))^{*} b$, which generates $b \notin A$ and cannot generate aaaaaab $\in A$;
- $(a a \cup b b)^{*}(a a \cup a b)$, which can't generate $a b a b \in A$;
- $(a \cup b)^{n} b$ for n odd, which is not a regular expression.
(b) $a^{*}(b a \cup \varepsilon) b^{*}(a \cup \varepsilon) b^{*}$, or $\left(a^{*} b a \cup a^{*}\right) b^{*}(a \cup \varepsilon) b^{*}$, or \ldots. There are infinitely many other correct regular expressions for this language.
(c) As on slide 1-63 of the notes, if A_{1} is defined by NFA N_{1} and A_{2} is defined by NFA N_{2}, then an NFA N for $A_{3}=A_{2}^{*}$ is as below:

(d) (Homework 5, problem 3b.) Assume that $S_{3} \notin V_{1} \cup V_{2}$, and $V_{1} \cap V_{2}=\emptyset$ is given. Then a CFG for $A_{3}=A_{2} \circ A_{1}$ is $G_{3}=\left(V_{3}, \Sigma, R_{3}, S_{3}\right)$ with $V_{3}=V_{1} \cup V_{2} \cup\left\{S_{3}\right\}$ and $R_{3}=R_{1} \cup R_{2} \cup\left\{S_{3} \rightarrow S_{2} S_{1}\right\}$.

3. A DFA for C is below:

4. (a) For $\Sigma=\{a, b, c\}$, let $L=\left\{w \in \Sigma^{*}\left|w=w^{\mathcal{R}},|w|\right.\right.$ is odd $\}$ be the language, which is odd-length palindromes in Σ^{*}. A CFG $G=(V, \Sigma, R, S)$ for L has $V=\{S\}$ with S the starting variable, $\Sigma=\{a, b, c\}$, and rules

$$
S \rightarrow a S a|b S b| c S c|a| b \mid c
$$

There are infinitely many other correct CFGs for L.
(b) There are infinitely many correct PDAs for L. Here is one:

The language consists of odd-length palindromes. Each string w has length $n=$ $2 k+1$ for some $k \geq 0$, and the first k symbols are the reverse of the last k symbols, and the symbol in the middle is unmatched. In the above PDA

- state q_{2} pushes an a for each a read, pushes an b for each b read, and pushes an c for each c read, for the first k symbols,
- the transition from q_{2} to q_{3} reads the middle symbol in w without matching it to anything,
- state q_{3} reads in the last k symbols, matching them with the reverse of the first k symbols in the stack,
- the transition from state q_{3} to q_{4} pops $\$$ to make sure the stack is empty before accepting.

Another approach uses the algorithm from Lemma 2.21 to convert the CFG in part (a) into a PDA.

Note that

- The path $q_{2} \rightarrow q_{4} \rightarrow q_{5} \rightarrow q_{2}$ corresponds to the rule $S \rightarrow a S a$, where the symbols on the right side of the rule are pushed in reverse order.
- The path $q_{2} \rightarrow q_{6} \rightarrow q_{7} \rightarrow q_{2}$ corresponds to the rule $S \rightarrow b S b$, where the symbols on the right side of the rule are pushed in reverse order.
- The path $q_{2} \rightarrow q_{8} \rightarrow q_{9} \rightarrow q_{2}$ corresponds to the rule $S \rightarrow c S c$, where the symbols on the right side of the rule are pushed in reverse order.

5. For $\Sigma=\{a, b, c\}$, the language $A=\left\{w \in \Sigma^{*}\left|w=w^{\mathcal{R}},|w|\right.\right.$ is odd $\}$ is nonregular. We prove this by contradiction. Suppose that A is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string $s=a^{p} b a^{p}$, where $s \in A$ because $s=s^{\mathcal{R}}$ and $|s|=2 p+1$ is odd. Also, we have that $|s|=2 p+1 \geq p$, so the Pumping Lemma will hold. Thus, there exist strings x, y, and z such that $s=x y z$ and
(a) $x y^{i} z \in A$ for each $i \geq 0$,
(b) $|y|>0$,
(c) $|x y| \leq p$.

Because the first p symbols of s are all a 's, the third property implies that x and y consist only of a 's. So z will be the rest of the first set of a 's (possibly none), followed by $b a^{p}$. The second property states that $|y|>0$, so y has at least one a. More precisely,
we can then say that

$$
\begin{aligned}
& x=a^{j} \text { for some } j \geq 0 \\
& y=a^{k} \text { for some } k \geq 1 \\
& z=a^{m} b a^{p} \text { for some } m \geq 0
\end{aligned}
$$

Because

$$
a^{p} b a^{p}=s=x y z=a^{j} a^{k} a^{m} b a^{p}=a^{j+k+m} b a^{p},
$$

we must have that

$$
j+k+m=p \quad \text { and } \quad k \geq 1
$$

The first property implies that the pumped string $x y^{2} z \in A$, but

$$
\begin{aligned}
x y^{2} z & =a^{j} a^{k} a^{k} a^{m} b a^{p} \\
& =a^{p+k} b a^{p} \notin A
\end{aligned}
$$

because it is not a palindrome since $k \geq 1$. This contradicts the first property of the pumping lemma. Therefore, A is a nonregular language.

