CS 341-009, Fall 2023, Hybrid Section
Solutions for Midterm 1

1. Multiple choice.

1.1. Answer: (b).

HW 6, problem 2a, shows that the class of CFLs is not closed under intersec-
tion, so (a) is incorrect.
HW 5, problem 3c, shows that (b) is correct.

HW 6, problem 2b, shows that the class of CFLs is not closed under comple-
mentation, so (c) is incorrect.

The language { a™0"c™ | n > 0} is not context-free by slide 2-96, so not all
languages are context-free, so (d) is incorrect.

By Corollary 2.32, every regular language is also context-free, so (e) is incor-
rect.

1.2. Answer: (c).

The class of context-free languages is closed under union (Homework 5, prob-
lem 3a), so BU C' is context-free. Also, the class of context-free languages
is closed under concatenation (Homework 5, problem 3b), ensuring that
A(BUC(C) is context-free, so (c) is correct.

We know that the class of context-free languages is not closed under com-
plementation (Homework 6, problem 2b), so there exists some context-free
language D whose complement D is not context-free. Also, let B = C' = {¢},
which is finite, so B and C are regular (slide 1-95), making them also context-
free (Corollary 2.32). Thus, BUC = {e}, and let A = D, so A(BUC) =

A = D is non-context free, making (a) incorrect.

Let A be any regular language, so A is also context-free (Corollary 2.32). As
A is regular, A is also regular (Homework 2, problem 3), so A is also context-
free (Corollary 2.32). The class of context free languages is closed under
concatenation (Homework 5, problem 3b) and union (Homework 5, problem
3a), so in this case when A is regular, we have that A(BUC) is context-free,
showing (b) is incorrect.

For ¥ = {a, b}, let A be the language of all strings over ¥ that don’t begin
with a. Now A has regular expression ¢ U b(a U b)*, so Kleene’s Theorem
implies that A is a regular language, making A also context-free (Corollary
2.32). Also, A is the set of all strings over ¥ that begin with a; e.g., a € A.
Also, let B = {b} and C = {b}, each of which are finite so also regular (slide
1-95) and context-free (Corollary 2.32). Also, BU C = {b}. Then, we have
that ab € A(BUC), but ab ¢ (B U C)A, making (d) incorrect.

1.3. Answer: (b).

The regular expression (10*1)* U ((0U 1)(0U 1))*(0 U 1) cannot generate the
string 0101 € L, so (i) is incorrect.

1

e The regular expression ((0U1)(0U1))*(0U 1) U (0*10*10*)* cannot generate
the string 00 € L, so (iii) is incorrect.

e To understand the correctness of (ii), first express the language L as L =
Ly U Ly, where L, is the language of strings in >* of odd length, and L is
the language of strings in ¥* with an even number of 1’s. Thus, if we have a
regular express Ry for L; and a regular expression R, for Lo, then a regular
expression for L = L1 ULy is R = R;URy. We can obtain regular expressions
R; and R, by converting DFAs for L; and L, into regular expressions. A
DFA M1 for L1 is

@

0,1

While we can use the algorithm in part of the proof of Kleene’s theorem
(Lemma 1.60) to convert the DFA M into a regular expression R, the DFA
is simple enough to be able to analyze it directly to obtain R;. Specifically,
note that every string accepted by M; has to be processed as follows:

— start in ¢,

— loop from ¢; back to ¢; zero or more times,

— move from ¢; to ¢; and end in ¢5.
Looping from ¢; back to ¢; corresponds to (0 U 1)(0 U 1), so looping zero or
more times yields ((0U1)(0U1))*. Moving from ¢; to ¢, happens on (0U1).
Thus, we get Ry = ((0U1)(0U 1))*(0U 1).
A DFA M, recognizing L is

To obtain a regular expression Ry corresponding M,, note that every string
accepted by Ms has to be processed as follows:

— start in ¢,
— loop from ¢; back to ¢; zero or more times, and end in ¢;.

Looping from ¢; back to ¢; requires 0 or 10*1, which corresponds to 0U10*1 =
10*1 U 0, so looping zero or more times corresponds to (10*1 U 0)*, Thus, we
get Ry = (101U 0)*.

Putting this all together gives R = Ry U Ry = Ry U Ry = (101U 0)* U ((0U
Houl)*(ouUl).

1.4. Answer: (d).
e Consider A = {0™1™ | n > 0}, which is nonregular (slide 1-105). Let C' =

2

{02120 |y > 0}, so C is the set of strings in A with an odd number
of 0s followed by exactly the same number of 1s, and C' is infinite. Now
let B=A—-C = {01?" | n > 0}, so B is the set of strings in A with
an even number of 0Os followed by exactly the same number of 1s. We can
show that B is nonregular by the pumping lemma, as follows. Suppose that
B is regular, and consider s = 0??1?? € B, where p is the pumping length.
Note that |s| = 4p > p, so the conclusions of the pumping lemma must hold.
Splitting the string s = zyz as in the pumping lemma leads to = 0/ for
some j > 0, y = 0F for some k > 1, and z = 0™0P1% for some m > 0, where
j+k+m = p. But the pumped string xyyz = 070F0F0™0P1% = 02r+*1%0 ¢ B,
which is a contradiction. Thus, B is nonregular, showing (a) is incorrect.

e Consider A = {0"1™ | n > 0}, which is nonregular (slide 1-105), and let
C' = A, which is infinite. Then B = A — C = (), which is regular (B has
regular expression (), so B is regular by Kleene’s theorem), so (b) is incorrect.
Also, B then is also context-free (Corollary 2.32), so (c) is incorrect.

1.5. Answer: (b).

e The language A with regular expression b* is infinite and regular, so (a) is
incorrect.

e Corollary 2.32 shows that (b) is correct.

e Consider the language A with regular expression a*b*. Then aab € A and
abb € A, but their concatenation aababb ¢ A, so (c) is incorrect. While the
class of regular languages is closed under concatenation, an individual regular
language may not be closed under concatenation, as the example shows.

1.6. Answer: (c).

e By Theorem 2.20, a language is context-free if and only if some PDA recog-
nizes it, so we can answer the question by considering CFLs. The language
{a"" | n > 0} is context-free but infinite, so (a) is incorrect.

e The language {c} is finite, so it is regular (slide 1-95), and Corollary 2.32
ensures it is also context-free, so (b) is incorrect.

e By Theorem 2.20, a language is context-free if and only if some PDA recog-
nizes it, and Theorem 2.9 then guarantees that the language has a CFG in
Chomsky normal form, so (d) is incorrect.

1.7. Answer: (c).

e Kleene’s Theorem (Theorem 1.54) implies that L must be regular, so (a) is
incorrect.

e Because L must be regular, Corollary 2.32 ensures L is also context-free, so
(c) is correct and (b) is incorrect.

e For the language L with regular expression ab*, we have that x = ab € L but
2R =ba ¢ L, so L is not closed under reversal, making (d) incorrect.

1.8. Answer: (c).
e The languages L1 = {a"0"c¢” | n > 0} and Ly = {b"a"c" | n > 0} are

3

non-context-free languages (slide 2-96), with L; N Ly = {e}, which is regular
because it is finite (slide 1-95). Thus, the intersection is also context-free by
Corollary 2.32, making (a) incorrect.

If Ly = Ly={a™"c" |n >0}, then Ly N Ly = Ly, which is non-regular and
non-context-free, so (b) and (d) are incorrect.

The previous two examples show that (c) is correct.

1.9. Answer: (e).

Consider the language A = {0"1" | n > 0}, which we know is nonregular
(slide 1-105). Now let L = A* which we can prove is also nonregular by
the pumping lemma, which shows that (a) is incorrect. For an outline of the
proof that L is nonregular, suppose that L is regular, and consider the string
s = 0P1? € L, where p is the pumping length. Note that |s| = 2p > p, so
the conclusions of the pumping lemma will hold. Thus, we can write s = zyz
with # = 0/ for j > 0, y = 0F for k > 1, and z = 0™1? for m > 0, where
j+k+m = p. But the pumped string zyyz = 0P*¥1P cannot be written as a
concatenation of zero of more strings from A. This contradicts the pumping
lemma so L is nonregular, showing that (a) is incorrect. Also, let B = A, so
AN B = A, which is nonregular, so (c) is also incorrect.

For the same language A = {0"1" | n > 0}, let B = {e}, so Ao B = A,
which we know is nonregular. Thus, (b) is incorrect.

1.10. Answer: (d).

HW 6, problem 4, shows that A is non-context-free, so (d) is correct.
Because A is non-context-free, Theorem 2.20 shows that A cannot have a
PDA, making (c) incorrect.

Also, A being non-context-free implies that A is also not regular (Corollary
2.32), so (a) and (b) are incorrect. We can see that the regular expression
(00)*(111)*(0)* in (a) is wrong because it generates the string 00 ¢ A.

2. (a) ((aUb)(aUb))*(aUb)b.
There are infinitely many other correct regular expressions for the language, e.g.,
((@Ub)(@aUb))*abU ((a Ub)(a Ub))*bb, or
abUbbU ((aUb)(aUb))*(aUb)b, or

Some incorrect answers include

((aUb)b)*, which generates ¢ ¢ A and cannot generate aaab € A;
((aUb)(aUb)(aLb))*b, which generates b ¢ A and cannot generate aaaaab € A;
(aa U bb)*(aa U ab), which can’t generate abab € A;

(a U b)"b for n odd, which is not a regular expression.

(b) a*(ba Ue)b*(aUe)b*, or (a*ba U a*)b*(aUe)b*, or There are infinitely many
other correct regular expressions for this language.

(c) As on slide 1-63 of the notes, if A; is defined by NFA N; and A, is defined by
NFA Ny, then an NFA N for A3 = A} is as below:

N,

0 —@
o © o ©

(d) (Homework 5, problem 3b.) Assume that S3 & V3 U Vs, and Vi NV, = 0 is given.
Then a CFG for A3 = Ay 0 Ay is G3 = (V3, %, R3, S3) with V3 = V; UV, U {S5}
and Rg :R1UR2U{53—> 5251}.

3. A DFA for C is below:

4. (a) For ¥ = {a,b,c}, let L ={w e X*|w=w~ |wlisodd} be the language, which
is odd-length palindromes in ¥*. A CFG G = (V,X,R,S) for L has V = {S}
with S the starting variable, ¥ = {a, b, ¢}, and rules

S —aSa |bSb|cSc|a|b]|c

There are infinitely many other correct CFGs for L.

(b) There are infinitely many correct PDAs for L. Here is one:

a, & —¢
b,e —¢

@5,5—>$ [\ GEE /\5$—>5©

N

a, e —a a, a — &
b,e—b b, b — ¢
c, e —>c c,c—¢e

The language consists of odd-length palindromes. Each string w has length n =
2k+1 for some k > 0, and the first & symbols are the reverse of the last k symbols,
and the symbol in the middle is unmatched. In the above PDA

e state gp pushes an a for each a read, pushes an b for each b read, and pushes
an ¢ for each c read, for the first k£ symbols,

e the transition from ¢, to g3 reads the middle symbol in w without matching
it to anything,

e state ¢3 reads in the last k£ symbols, matching them with the reverse of the
first k£ symbols in the stack,

e the transition from state ¢z to g4 pops $ to make sure the stack is empty
before accepting.

Another approach uses the algorithm from Lemma 2.21 to convert the CFG in
part (a) into a PDA.

g, S—=a

Note that

e The path ¢ — q4 — ¢5 — ¢o corresponds to the rule S — aSa, where the
symbols on the right side of the rule are pushed in reverse order.

e The path ¢ — g5 — ¢q7 — ¢ corresponds to the rule S — bSb, where the
symbols on the right side of the rule are pushed in reverse order.

e The path ¢ — g3 — g9 — ¢ corresponds to the rule S — ¢Sc, where the
symbols on the right side of the rule are pushed in reverse order.

5. For ¥ = {a,b,c}, the language A = {w € ¥* | w = w”, |w|is odd } is nonregular.
We prove this by contradiction. Suppose that A is a regular language. Let p be the
“pumping length” of the Pumping Lemma. Consider the string s = aPba?, where s € A
because s = s® and |s| = 2p + 1 is odd. Also, we have that |s| = 2p +1 > p, so the
Pumping Lemma will hold. Thus, there exist strings x, y, and z such that s = xyz
and

(a) zy'z € A for each i > 0,
(b) |yl >0,
(e) lzyl <p.

Because the first p symbols of s are all a’s, the third property implies that x and y
consist only of a’s. So z will be the rest of the first set of a’s (possibly none), followed
by baP. The second property states that |y| > 0, so y has at least one a. More precisely,

we can then say that

x = d for some j > 0,
= a" for some k > 1,

z = a"ba® for some m > 0.

Because
aPba? = s = zyz = d?a*a™ba” = ¥ TFT™ba?,

we must have that
j+k+m=p and k>1.

The first property implies that the pumped string zy?z € A, but

ry’z = dd*da™ba?
aPFba? ¢ A

because it is not a palindrome since £ > 1. This contradicts the first property of the
pumping lemma. Therefore, A is a nonregular language.

