
CS 341-009, Fall 2023, Hybrid Section

Solutions for Midterm 1

1. Multiple choice.

1.1. Answer: (b).

• HW 6, problem 2a, shows that the class of CFLs is not closed under intersec-
tion, so (a) is incorrect.

• HW 5, problem 3c, shows that (b) is correct.

• HW 6, problem 2b, shows that the class of CFLs is not closed under comple-
mentation, so (c) is incorrect.

• The language { anbncn | n ≥ 0 } is not context-free by slide 2-96, so not all
languages are context-free, so (d) is incorrect.

• By Corollary 2.32, every regular language is also context-free, so (e) is incor-
rect.

1.2. Answer: (c).

• The class of context-free languages is closed under union (Homework 5, prob-
lem 3a), so B ∪ C is context-free. Also, the class of context-free languages
is closed under concatenation (Homework 5, problem 3b), ensuring that
A(B ∪ C) is context-free, so (c) is correct.

• We know that the class of context-free languages is not closed under com-
plementation (Homework 6, problem 2b), so there exists some context-free
language D whose complement D is not context-free. Also, let B = C = {ε},
which is finite, so B and C are regular (slide 1-95), making them also context-
free (Corollary 2.32). Thus, B ∪ C = {ε}, and let A = D, so A(B ∪ C) =
A = D is non-context free, making (a) incorrect.

• Let A be any regular language, so A is also context-free (Corollary 2.32). As
A is regular, A is also regular (Homework 2, problem 3), so A is also context-
free (Corollary 2.32). The class of context free languages is closed under
concatenation (Homework 5, problem 3b) and union (Homework 5, problem
3a), so in this case when A is regular, we have that A(B ∪C) is context-free,
showing (b) is incorrect.

• For Σ = {a, b}, let A be the language of all strings over Σ that don’t begin
with a. Now A has regular expression ε ∪ b(a ∪ b)∗, so Kleene’s Theorem
implies that A is a regular language, making A also context-free (Corollary
2.32). Also, A is the set of all strings over Σ that begin with a; e.g., a ∈ A.
Also, let B = {b} and C = {b}, each of which are finite so also regular (slide
1-95) and context-free (Corollary 2.32). Also, B ∪ C = {b}. Then, we have
that ab ∈ A(B ∪ C), but ab 6∈ (B ∪ C)A, making (d) incorrect.

1.3. Answer: (b).

• The regular expression (10∗1)∗ ∪ ((0 ∪ 1)(0 ∪ 1))∗(0 ∪ 1) cannot generate the
string 0101 ∈ L, so (i) is incorrect.
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• The regular expression ((0 ∪ 1)(0 ∪ 1))∗(0 ∪ 1) ∪ (0∗10∗10∗)∗ cannot generate
the string 00 ∈ L, so (iii) is incorrect.

• To understand the correctness of (ii), first express the language L as L =
L1 ∪ L2, where L1 is the language of strings in Σ∗ of odd length, and L2 is
the language of strings in Σ∗ with an even number of 1’s. Thus, if we have a
regular express R1 for L1 and a regular expression R2 for L2, then a regular
expression for L = L1∪L2 is R = R1∪R2. We can obtain regular expressions
R1 and R2 by converting DFAs for L1 and L2 into regular expressions. A
DFA M1 for L1 is

q1 q2

0, 1

0, 1

While we can use the algorithm in part of the proof of Kleene’s theorem
(Lemma 1.60) to convert the DFA M1 into a regular expression R1, the DFA
is simple enough to be able to analyze it directly to obtain R1. Specifically,
note that every string accepted by M1 has to be processed as follows:

– start in q1,

– loop from q1 back to q1 zero or more times,

– move from q1 to q2 and end in q2.

Looping from q1 back to q1 corresponds to (0 ∪ 1)(0 ∪ 1), so looping zero or
more times yields ((0∪ 1)(0∪ 1))∗. Moving from q1 to q2 happens on (0∪ 1).
Thus, we get R1 = ((0 ∪ 1)(0 ∪ 1))∗(0 ∪ 1).
A DFA M2 recognizing L2 is

q1 q2

0

1

0

1

To obtain a regular expression R2 corresponding M2, note that every string
accepted by M2 has to be processed as follows:

– start in q1,

– loop from q1 back to q1 zero or more times, and end in q1.

Looping from q1 back to q1 requires 0 or 10
∗1, which corresponds to 0∪10∗1 =

10∗1 ∪ 0, so looping zero or more times corresponds to (10∗1 ∪ 0)∗, Thus, we
get R2 = (10∗1 ∪ 0)∗.
Putting this all together gives R = R1 ∪ R2 = R2 ∪ R1 = (10∗1 ∪ 0)∗ ∪ ((0 ∪
1)(0 ∪ 1))∗(0 ∪ 1).

1.4. Answer: (d).

• Consider A = { 0n1n | n ≥ 0 }, which is nonregular (slide 1-105). Let C =
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{ 02n+112n+1 | n ≥ 0 }, so C is the set of strings in A with an odd number
of 0s followed by exactly the same number of 1s, and C is infinite. Now
let B = A − C = { 02n12n | n ≥ 0 }, so B is the set of strings in A with
an even number of 0s followed by exactly the same number of 1s. We can
show that B is nonregular by the pumping lemma, as follows. Suppose that
B is regular, and consider s = 02p12p ∈ B, where p is the pumping length.
Note that |s| = 4p ≥ p, so the conclusions of the pumping lemma must hold.
Splitting the string s = xyz as in the pumping lemma leads to x = 0j for
some j ≥ 0, y = 0k for some k ≥ 1, and z = 0m0p12p for some m ≥ 0, where
j+k+m = p. But the pumped string xyyz = 0j0k0k0m0p12p = 02p+k12p 6∈ B,
which is a contradiction. Thus, B is nonregular, showing (a) is incorrect.

• Consider A = { 0n1n | n ≥ 0 }, which is nonregular (slide 1-105), and let
C = A, which is infinite. Then B = A − C = ∅, which is regular (B has
regular expression ∅, so B is regular by Kleene’s theorem), so (b) is incorrect.
Also, B then is also context-free (Corollary 2.32), so (c) is incorrect.

1.5. Answer: (b).

• The language A with regular expression b∗ is infinite and regular, so (a) is
incorrect.

• Corollary 2.32 shows that (b) is correct.

• Consider the language A with regular expression a∗b∗. Then aab ∈ A and
abb ∈ A, but their concatenation aababb 6∈ A, so (c) is incorrect. While the
class of regular languages is closed under concatenation, an individual regular
language may not be closed under concatenation, as the example shows.

1.6. Answer: (c).

• By Theorem 2.20, a language is context-free if and only if some PDA recog-
nizes it, so we can answer the question by considering CFLs. The language
{ anbn | n ≥ 0 } is context-free but infinite, so (a) is incorrect.

• The language {ε} is finite, so it is regular (slide 1-95), and Corollary 2.32
ensures it is also context-free, so (b) is incorrect.

• By Theorem 2.20, a language is context-free if and only if some PDA recog-
nizes it, and Theorem 2.9 then guarantees that the language has a CFG in
Chomsky normal form, so (d) is incorrect.

1.7. Answer: (c).

• Kleene’s Theorem (Theorem 1.54) implies that L must be regular, so (a) is
incorrect.

• Because L must be regular, Corollary 2.32 ensures L is also context-free, so
(c) is correct and (b) is incorrect.

• For the language L with regular expression ab∗, we have that x = ab ∈ L but
xR = ba 6∈ L, so L is not closed under reversal, making (d) incorrect.

1.8. Answer: (c).

• The languages L1 = { anbncn | n ≥ 0 } and L2 = { bnancn | n ≥ 0 } are
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non-context-free languages (slide 2-96), with L1 ∩ L2 = {ε}, which is regular
because it is finite (slide 1-95). Thus, the intersection is also context-free by
Corollary 2.32, making (a) incorrect.

• If L1 = L2 = { anbncn | n ≥ 0 }, then L1 ∩ L2 = L1, which is non-regular and
non-context-free, so (b) and (d) are incorrect.

• The previous two examples show that (c) is correct.

1.9. Answer: (e).

• Consider the language A = { 0n1n | n ≥ 0 }, which we know is nonregular
(slide 1-105). Now let L = A∗, which we can prove is also nonregular by
the pumping lemma, which shows that (a) is incorrect. For an outline of the
proof that L is nonregular, suppose that L is regular, and consider the string
s = 0p1p ∈ L, where p is the pumping length. Note that |s| = 2p ≥ p, so
the conclusions of the pumping lemma will hold. Thus, we can write s = xyz

with x = 0j for j ≥ 0, y = 0k for k ≥ 1, and z = 0m1p for m ≥ 0, where
j + k+m = p. But the pumped string xyyz = 0p+k1p cannot be written as a
concatenation of zero of more strings from A. This contradicts the pumping
lemma so L is nonregular, showing that (a) is incorrect. Also, let B = A, so
A ∩ B = A, which is nonregular, so (c) is also incorrect.

• For the same language A = { 0n1n | n ≥ 0 }, let B = {ε}, so A ◦ B = A,
which we know is nonregular. Thus, (b) is incorrect.

1.10. Answer: (d).

• HW 6, problem 4, shows that A is non-context-free, so (d) is correct.

• Because A is non-context-free, Theorem 2.20 shows that A cannot have a
PDA, making (c) incorrect.

• Also, A being non-context-free implies that A is also not regular (Corollary
2.32), so (a) and (b) are incorrect. We can see that the regular expression
(00)∗(111)∗(0)∗ in (a) is wrong because it generates the string 00 6∈ A.

2. (a) ((a ∪ b)(a ∪ b))∗(a ∪ b)b.
There are infinitely many other correct regular expressions for the language, e.g.,
((a ∪ b)(a ∪ b))∗ab ∪ ((a ∪ b)(a ∪ b))∗bb, or
ab ∪ bb ∪ ((a ∪ b)(a ∪ b))∗(a ∪ b)b, or . . . .
Some incorrect answers include

• ((a ∪ b)b)∗, which generates ε 6∈ A and cannot generate aaab ∈ A;

• ((a∪b)(a∪b)(a∪b))∗b, which generates b 6∈ A and cannot generate aaaaab ∈ A;

• (aa ∪ bb)∗(aa ∪ ab), which can’t generate abab ∈ A;

• (a ∪ b)nb for n odd, which is not a regular expression.

(b) a∗(ba ∪ ε)b∗(a ∪ ε)b∗, or (a∗ba ∪ a∗)b∗(a ∪ ε)b∗, or . . . . There are infinitely many
other correct regular expressions for this language.

(c) As on slide 1-63 of the notes, if A1 is defined by NFA N1 and A2 is defined by
NFA N2, then an NFA N for A3 = A∗

2 is as below:
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N2

N

ε

εε

(d) (Homework 5, problem 3b.) Assume that S3 6∈ V1 ∪ V2, and V1 ∩ V2 = ∅ is given.
Then a CFG for A3 = A2 ◦ A1 is G3 = (V3,Σ, R3, S3) with V3 = V1 ∪ V2 ∪ {S3}
and R3 = R1 ∪R2 ∪ {S3 → S2S1 }.

3. A DFA for C is below:

1, 2 2, 3

2 1, 2, 3∅

a

b
a

b

b

a

a

b

a, b

4. (a) For Σ = {a, b, c}, let L = {w ∈ Σ∗ | w = wR, |w| is odd } be the language, which
is odd-length palindromes in Σ∗. A CFG G = (V,Σ, R, S) for L has V = {S}
with S the starting variable, Σ = {a, b, c}, and rules

S → aSa | bSb | cSc | a | b | c

There are infinitely many other correct CFGs for L.

(b) There are infinitely many correct PDAs for L. Here is one:
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q1 q2 q3 q4
ε, ε → $

a, ε → a

b, ε → b

c, ε → c

a, ε → ε

b, ε → ε

c, ε → ε

a, a → ε

b, b → ε

c, c → ε

ε, $ → ε

The language consists of odd-length palindromes. Each string w has length n =
2k+1 for some k ≥ 0, and the first k symbols are the reverse of the last k symbols,
and the symbol in the middle is unmatched. In the above PDA

• state q2 pushes an a for each a read, pushes an b for each b read, and pushes
an c for each c read, for the first k symbols,

• the transition from q2 to q3 reads the middle symbol in w without matching
it to anything,

• state q3 reads in the last k symbols, matching them with the reverse of the
first k symbols in the stack,

• the transition from state q3 to q4 pops $ to make sure the stack is empty
before accepting.

Another approach uses the algorithm from Lemma 2.21 to convert the CFG in
part (a) into a PDA.
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q0 q1

q2q4

q5

q6 q7

q8

q9

q3
ε, ε → $

ε, ε → S

ε, S → a

ε, ε → S ε, ε → a

ε, S → b

ε, ε → S

ε, ε → b

ε, S → a

ε, ε → S

ε, ε → c

ε, S → a

ε, S → b

ε, S → c

a, a → ε

b, b → ε

c, c → ε ε, $ → ε

Note that

• The path q2 → q4 → q5 → q2 corresponds to the rule S → aSa, where the
symbols on the right side of the rule are pushed in reverse order.

• The path q2 → q6 → q7 → q2 corresponds to the rule S → bSb, where the
symbols on the right side of the rule are pushed in reverse order.

• The path q2 → q8 → q9 → q2 corresponds to the rule S → cSc, where the
symbols on the right side of the rule are pushed in reverse order.

5. For Σ = {a, b, c}, the language A = {w ∈ Σ∗ | w = wR, |w| is odd } is nonregular.
We prove this by contradiction. Suppose that A is a regular language. Let p be the
“pumping length” of the Pumping Lemma. Consider the string s = apbap, where s ∈ A

because s = sR and |s| = 2p + 1 is odd. Also, we have that |s| = 2p + 1 ≥ p, so the
Pumping Lemma will hold. Thus, there exist strings x, y, and z such that s = xyz

and

(a) xyiz ∈ A for each i ≥ 0,

(b) |y| > 0,

(c) |xy| ≤ p.

Because the first p symbols of s are all a’s, the third property implies that x and y

consist only of a’s. So z will be the rest of the first set of a’s (possibly none), followed
by bap. The second property states that |y| > 0, so y has at least one a. More precisely,
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we can then say that

x = aj for some j ≥ 0,

y = ak for some k ≥ 1,

z = ambap for some m ≥ 0.

Because
apbap = s = xyz = ajakambap = aj+k+mbap,

we must have that
j + k +m = p and k ≥ 1.

The first property implies that the pumped string xy2z ∈ A, but

xy2z = ajakakambap

= ap+kbap 6∈ A

because it is not a palindrome since k ≥ 1. This contradicts the first property of the
pumping lemma. Therefore, A is a nonregular language.
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