CS 341-006, Spring 2023, Face-to-Face Section Solutions for Midterm 1

1. Multiple choice.
1.1. Answer: (d).

- For the alphabet $\Sigma=\{0,1\}$, consider the language $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\} \subseteq \Sigma^{*}$, and slide 1-105 proves A is nonregular. Define B as the complement of A, so $B=\bar{A}=\Sigma^{*}-A$, which must also be nonregular. To see why, suppose that B is regular; then $\bar{B}=\Sigma^{*}-B$ is regular because the class of regular languages is closed under complementation (Homework 2, problem 3). But $\bar{B}=A$, making A regular, which is a contradiction because A is nonregular. Now $A \cup B=\Sigma^{*}$, which is regular by Kleene's theorem since it has a regular expression, so (d) is correct, and (c) is incorrect. Also, for this example, $A \cap B=\emptyset$, which is regular by slide 1-95 because \emptyset is finite, so (a) is incorrect.
- To show that choice (b) is incorrect, suppose that A and B are nonregular. Now A must be infinite because if it were finite, then it would be regular by slide 1-95. We always have that $A \subseteq A \cup B$, so $|A \cup B| \geq|A|=\infty$, proving that $A \cup B$ must be infinite.
1.2. Answer: (c).
- By Theorem 2.20, a language is context-free if and only if some PDA recognizes it, so we can answer the question by considering CFLs. The language $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is context-free but infinite, so (a) is incorrect.
- The language $\{\varepsilon\}$ is finite, so it is regular (slide 1-95), and Corollary 2.32 ensures it is also context-free, so (b) is incorrect. Combining this item and the previous shows that choice (c) is correct.
- Theorem 2.9 guarantees that a context-free language has a CFG in Chomsky normal form, so (d) is incorrect.
1.3. Answer: (e).
- Suppose that $B=\Sigma^{*}$ for $\Sigma=\{0,1\}$, so B is regular because it has a regular expression, and B is also context-free by Corollary 2.32. We next give examples of various languages A with $A \subseteq B$ to show that (a), (b), (c), and (d) are incorrect.
- Consider $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\} \subseteq B$, where A is nonregular by slide 1-105, showing that (a) is incorrect. Also, A is context-free (slide 2-5), so (d) is incorrect.
- Consider $A=\emptyset \subseteq B$, where A is regular since it has regular expression \emptyset, making (b) incorrect. Also, A is context-free by Corollary 2.32, so (d) is incorrect.
- Consider $A=\left\{w w \mid w \in \Sigma^{*}\right\} \subseteq B$, where A is non-context-free by slide 2-99, so (c) is incorrect.
1.4. Answer: (b).
- HW 4, problem 5c, shows that (a) is incorrect, and that (b) is correct.
- Slightly modifying the proof on slide $1-105$ shows that the language $L_{1}=$ $\left\{a^{n} b^{n} \mid n \geq 1\right\}$ is non-regular. Adding ε to L_{1} leads to the language $L_{2}=$ $\left\{a^{n} b^{n} \mid n \geq 0\right\}$, which is context-free (with CFG having rules $S \rightarrow a S b \mid \varepsilon$), so (c) is incorrect.
- Slightly modifying the proof on slide 2-96 shows that the language $L_{1}=$ $\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$ is non-context-free, so it is also non-regular by Corollary 2.32. Adding ε to L_{1} leads to the language $L_{2}=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$, which is non-context-free by the proof on slide $2-96$, so (d) is incorrect.
1.5. Answer: (e).
- The regular expression $b^{*} a^{*}$ generates the string $b b a \notin A$, so (a) is incorrect.
- The regular expression $(b a)^{*}$ generates the string $b a b a \notin A$, so (b) is incorrect.
- The given CFG G in part (c) has language $L(G)=\emptyset$ (i.e., no strings at all) because derivations can never terminate: $S \Rightarrow b S a \Rightarrow b b S a a \Rightarrow b b b S a a a \Rightarrow$ \cdots, so (c) is incorrect.
- The language A has CFG with rules $S \rightarrow b S a \mid \varepsilon$, so (d) is incorrect.
1.6. Answer: (c).
- HW 6, problem 2a, shows that the class of CFLs is not closed under intersection, so (a) is incorrect.
- HW 6, problem 2b, shows that the class of CFLs is not closed under complementation, so (b) is incorrect.
- HW 5, problem 3b, shows that (c) is correct.
- The language $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not context-free by slide 2-96, so not all languages are context-free, making (d) incorrect.
- By Corollary 2.32, every regular language is also context-free, so (e) is incorrect.
1.7. Answer: (b).
- Suppose that A has regular expression $(a a)^{*} a$, so A is the set of strings of a 's of odd length. Because A has a regular expression, it is regular by Kleene's Theorem. Note that $a \in A$ and $a a a \in A$, but their concatenation $a a a a \notin A$, so A is not closed under concatenation, showing that (a) is incorrect, so (d) is also incorrect. (While this example shows that a particular regular language may not be closed under concatenation, the class of regular languages is closed under concatenation.) Also, the same language A is infinite, showing that (c) is incorrect.
- Corollary 2.32 shows that A must be context-free, so (b) is correct.
1.8. Answer: (c)
- Homework 1, problem 5 shows that (c) is correct.
- The language $A=\{\varepsilon\}$ has $A^{*}=\{\varepsilon\}$, which is finite, so (a) is incorrect.
- The language $A=\{\varepsilon, a\}$ has $A \circ A=\{\varepsilon, a, a a\} \neq A$, making (b) incorrect. The same language A has $A^{*}=\left\{a^{n} \mid n \geq 0\right\} \neq A$, so (d) is incorrect.
1.9. Answer: (a).
- Slide 1-95 shows that L must be regular, so (a) is correct, and (b) and (c) are incorrect.
- For the language $L_{1}=\{a\}$, the string $a a \in L_{1}$ but $a a \notin L_{1}$, making (d) incorrect.
1.10. Answer: (h).
- The regular expression $(0 \cup 1)^{*}(01 \cup 10)$ cannot generate the string $1 \in L$, so (i) is incorrect.
- The regular expression $(0 \cup 1)^{*}(0 \cup 1 \cup 01 \cup 10)$ generates the string $00 \notin L$, so (ii) is incorrect.
- The regular expression $(0 \cup 1)^{*}(01 \cup 10) \cup 0 \cup 1$ cannot generate the string $\varepsilon \in L$, so (iii) is incorrect.

2. (a) $(a \cup b)^{*} b a b$

There are infinitely many other correct regular expressions for this language, such as $\Sigma^{*} b a b$
or $(\varepsilon \cup a \cup b)^{*} b a b$
or bab $\cup(a \cup b)(a \cup b)^{*} b a b$
or $b a b \cup a b a b \cup b b a b \cup(a \cup b)^{*} b a b$
or $\left(a^{*} b^{*}\right)^{*} b a b$ or
There are also infinitely many incorrect regular expressions. For example, the regular expression $(b a b)^{*}$ is wrong because it can't generate $a b a b \in A$ nor $b b a b \in A$; it also incorrectly generates $\varepsilon \notin A$. Also, $a^{*} b^{*} a b a$ is wrong it can't generate $b a b a b a \in A$.
(b) $a a^{*} \cup a a b^{*} a a^{*} \cup b b^{*} a a^{*}$

There are infinitely many other correct regular expressions for this language, such as $\left(a \cup a a b^{*} a \cup b b^{*} a\right) a^{*}$
or $\left(a \cup(a a \cup b) b^{*} a\right) a^{*}$
or $\left(a\left(\varepsilon \cup a b^{*} a\right) \cup b b^{*} a\right) a^{*}$ or \ldots
(c) After performing the one step, the CFG is then

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow A 0 A S|0 A S| A 0 S|0 S| 0 A S 1 S|0 S 1 S| \varepsilon \\
A & \rightarrow 1 A 0 S \mid 10 S
\end{aligned}
$$

(d) (Slides 1-32 and 1-33) Given a DFA $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ for language A_{1} and a DFA $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ for language A_{2}, the language $A_{3}=A_{1} \cup A_{2}$ is recognized by the DFA $M_{3}=\left(Q_{3}, \Sigma, \delta_{3}, q_{3}, F_{3}\right)$, with

- $Q_{3}=Q_{1} \times Q_{2}$,
- $\delta_{3}((x, y), \ell)=\left(\delta_{1}(x, \ell), \delta_{2}(y, \ell)\right)$ for $(x, y) \in Q_{3}$ and $\ell \in \Sigma$,
- $q_{3}=\left(q_{1}, q_{2}\right)$, and
- $F_{3}=\left(F_{1} \times Q_{2}\right) \cup\left(Q_{1} \times F_{2}\right)=\left\{(x, y) \in Q_{3} \mid x \in F_{1}\right.$ or $\left.y \in F_{2}\right\}$.

3. A DFA for C is below:

4. (a) $G=(V, \Sigma, R, S)$ with set of variables $V=\{S, W, X, Y, Z\}$, where S is the start variable; set of terminals $\Sigma=\{a, b, c\}$; and rules

$$
\begin{aligned}
S & \rightarrow W X \mid Y Z \\
W & \rightarrow c W a \mid \varepsilon \\
X & \rightarrow b X \mid \varepsilon \\
Y & \rightarrow c Y \mid \varepsilon \\
Z & \rightarrow a Z b \mid \varepsilon
\end{aligned}
$$

Starting from variable W, the derived string will be in $A_{1}=\left\{c^{n} a^{n} \mid n \geq 0\right\}$. Starting from variable X, the derived string will be in $A_{2}=L\left(b^{*}\right)$. So if $S \Rightarrow W X$ is the first step taken in a derivation, then the resulting string will be in the language $B_{1}=A_{1} \circ A_{2}=\left\{c^{n} a^{n} b^{k} \mid n \geq 0, k \geq 0\right\}$.
Similarly, starting from the variable Y, the derived string will be in $A_{3}=L\left(c^{*}\right)$. Starting from the variable Z, the derived string will be in $A_{4}=\left\{a^{n} b^{n} \mid n \geq 0\right\}$. So if $S \Rightarrow Y Z$ is the first step taken in a derivation, then the resulting string will be in the language $B_{2}=\left\{c^{i} a^{n} b^{n} \mid i \geq 0, n \geq 0\right\}$. Finally, we get $L=B_{1} \cup B_{2}$. There are infinitely many other correct CFGs for L.
(b) There are infinitely many correct PDAs for L. Here is one:

The PDA has a nondeterministic branch at q_{1}.

- If the string is $c^{i} a^{j} b^{k}$ with $i=j$, then the PDA can accept the string by first taking the branch from q_{1} to q_{2}.
- If the string is $c^{i} a^{j} b^{k}$ with $j=k$, then the PDA can accept the string by first taking the branch from q_{1} to q_{5}.
Yet another approach uses the algorithm from Lemma 2.21 to convert the CFG in part (a) into a PDA.

Note that

- The path $q_{2} \rightarrow q_{4} \rightarrow q_{2}$ corresponds to the rule $S \rightarrow W X$.
- The path $q_{2} \rightarrow q_{5} \rightarrow q_{2}$ corresponds to the rule $S \rightarrow Y Z$.
- The path $q_{2} \rightarrow q_{6} \rightarrow q_{7} \rightarrow q_{2}$ corresponds to the rule $W \rightarrow c W a$.
- The path $q_{2} \rightarrow q_{8} \rightarrow q_{2}$ corresponds to the rule $X \rightarrow b X$.
- The path $q_{2} \rightarrow q_{9} \rightarrow q_{2}$ corresponds to the rule $Y \rightarrow c Y$.
- The path $q_{2} \rightarrow q_{10} \rightarrow q_{11} \rightarrow q_{2}$ corresponds to the rule $Z \rightarrow a Z b$.

5. Language $A=\left\{c^{i} a^{j} b^{k} \mid i, j, k \geq 0\right.$, and $i=j$ or $\left.j=k\right\}$ is nonregular. We prove this by contradiction. Suppose that A is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string $s=c^{p} a^{p}$. Note that $s \in A$ because the numbers of c 's and a 's are equal, and $|s|=2 p \geq p$, so the Pumping Lemma will hold. Thus, there exists strings x, y, and z such that $s=x y z$ and
(a) $x y^{i} z \in A$ for each $i \geq 0$,
(b) $|y|>0$,
(c) $|x y| \leq p$.

Since the first p symbols of s are all c 's, the third property implies that x and y consist only of c 's. So z will be the rest of the c 's, followed by a^{p}. The second property states that $|y|>0$, so y has at least one c. More precisely, we can then say that

$$
\begin{aligned}
x & =c^{j} \text { for some } j \geq 0 \\
y & =c^{k} \text { for some } k \geq 1 \\
z & =c^{m} a^{p} \text { for some } m \geq 0
\end{aligned}
$$

Since $c^{p} a^{p}=s=x y z=c^{j} c^{k} c^{m} a^{p}=c^{j+k+m} a^{p}$, we must have that

$$
j+k+m=p \quad \text { and } \quad k \geq 1
$$

The first property implies that $x y^{2} z \in A$, but

$$
\begin{aligned}
x y^{2} z & =c^{j} c^{k} c^{k} c^{m} a^{p} \\
& =c^{p+k} a^{p} \notin A
\end{aligned}
$$

since $p+k>p$ because $j+k+m=p$ and $k \geq 1$, so the number of c 's in the pumped string $x y^{2} z$ doesn't match the number of a 's, and the number of a 's doesn't match the number of b 's (none). Because the pumped string $x y^{2} z \notin A$, we have a contradiction. Therefore, A is a nonregular language.
Note that if you instead chose the string $s=c^{p} a^{p} b^{p} \in A$, you would not get a contradiction. This is because pumping up or down leads to the number of c 's changing, but the number of a 's and b 's remain the same and equal. Thus, the pumped string is still in the language, so there is no contradiction.
Another possible string that will result in a contradiction is $s=a^{p} b^{p} \in A$, where $|s|=2 p>p$. Then splitting $s=x y z$ satisfying properties (ii) and (iii) of the pumping lemma will lead to

$$
\begin{aligned}
& x=a^{j} \text { for some } j \geq 0 \\
& y=a^{k} \text { for some } k \geq 1 \\
& z=a^{m} b^{p} \text { for some } m \geq 0
\end{aligned}
$$

where $j+k+m=p$. Property (i) of the pumping lemma states that $x y y z \in A$, but $x y y z=a^{p+k} b^{p} \notin A$ because $k \geq 1$, giving a contradiction.

