
CS 341-006, Spring 2023, Face-to-Face Section

Solutions for Midterm 1

1. Multiple choice.

1.1. Answer: (d).

• For the alphabet Σ = {0, 1}, consider the language A = { 0n1n | n ≥ 0 } ⊆ Σ∗,
and slide 1-105 proves A is nonregular. Define B as the complement of A, so
B = A = Σ∗−A, which must also be nonregular. To see why, suppose that B
is regular; then B = Σ∗−B is regular because the class of regular languages is
closed under complementation (Homework 2, problem 3). But B = A, making
A regular, which is a contradiction because A is nonregular. Now A∪B = Σ∗,
which is regular by Kleene’s theorem since it has a regular expression, so (d)
is correct, and (c) is incorrect. Also, for this example, A ∩ B = ∅, which is
regular by slide 1-95 because ∅ is finite, so (a) is incorrect.

• To show that choice (b) is incorrect, suppose that A and B are nonregular.
Now A must be infinite because if it were finite, then it would be regular by
slide 1-95. We always have that A ⊆ A ∪ B, so |A ∪ B| ≥ |A| = ∞, proving
that A ∪B must be infinite.

1.2. Answer: (c).

• By Theorem 2.20, a language is context-free if and only if some PDA recog-
nizes it, so we can answer the question by considering CFLs. The language
{ anbn | n ≥ 0 } is context-free but infinite, so (a) is incorrect.

• The language {ε} is finite, so it is regular (slide 1-95), and Corollary 2.32
ensures it is also context-free, so (b) is incorrect. Combining this item and
the previous shows that choice (c) is correct.

• Theorem 2.9 guarantees that a context-free language has a CFG in Chomsky
normal form, so (d) is incorrect.

1.3. Answer: (e).

• Suppose that B = Σ∗ for Σ = {0, 1}, so B is regular because it has a regular
expression, and B is also context-free by Corollary 2.32. We next give exam-
ples of various languages A with A ⊆ B to show that (a), (b), (c), and (d)
are incorrect.

– Consider A = { 0n1n | n ≥ 0} ⊆ B, where A is nonregular by slide 1-105,
showing that (a) is incorrect. Also, A is context-free (slide 2-5), so (d) is
incorrect.

– Consider A = ∅ ⊆ B, where A is regular since it has regular expression
∅, making (b) incorrect. Also, A is context-free by Corollary 2.32, so (d)
is incorrect.

– Consider A = {ww | w ∈ Σ∗ } ⊆ B, where A is non-context-free by slide
2-99, so (c) is incorrect.

1.4. Answer: (b).
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• HW 4, problem 5c, shows that (a) is incorrect, and that (b) is correct.

• Slightly modifying the proof on slide 1-105 shows that the language L1 =
{ anbn | n ≥ 1 } is non-regular. Adding ε to L1 leads to the language L2 =
{ anbn | n ≥ 0 }, which is context-free (with CFG having rules S → aSb | ε),
so (c) is incorrect.

• Slightly modifying the proof on slide 2-96 shows that the language L1 =
{ anbncn | n ≥ 1 } is non-context-free, so it is also non-regular by Corollary
2.32. Adding ε to L1 leads to the language L2 = { anbncn | n ≥ 0 }, which is
non-context-free by the proof on slide 2-96, so (d) is incorrect.

1.5. Answer: (e).

• The regular expression b∗a∗ generates the string bba 6∈ A, so (a) is incorrect.

• The regular expression (ba)∗ generates the string baba 6∈ A, so (b) is incorrect.

• The given CFG G in part (c) has language L(G) = ∅ (i.e., no strings at all)
because derivations can never terminate: S ⇒ bSa ⇒ bbSaa ⇒ bbbSaaa ⇒
· · ·, so (c) is incorrect.

• The language A has CFG with rules S → bSa | ε, so (d) is incorrect.

1.6. Answer: (c).

• HW 6, problem 2a, shows that the class of CFLs is not closed under intersec-
tion, so (a) is incorrect.

• HW 6, problem 2b, shows that the class of CFLs is not closed under comple-
mentation, so (b) is incorrect.

• HW 5, problem 3b, shows that (c) is correct.

• The language { anbncn | n ≥ 0 } is not context-free by slide 2-96, so not all
languages are context-free, making (d) incorrect.

• By Corollary 2.32, every regular language is also context-free, so (e) is incor-
rect.

1.7. Answer: (b).

• Suppose that A has regular expression (aa)∗a, so A is the set of strings of a’s
of odd length. Because A has a regular expression, it is regular by Kleene’s
Theorem. Note that a ∈ A and aaa ∈ A, but their concatenation aaaa 6∈ A,
so A is not closed under concatenation, showing that (a) is incorrect, so (d) is
also incorrect. (While this example shows that a particular regular language
may not be closed under concatenation, the class of regular languages is

closed under concatenation.) Also, the same language A is infinite, showing
that (c) is incorrect.

• Corollary 2.32 shows that A must be context-free, so (b) is correct.

1.8. Answer: (c)

• Homework 1, problem 5 shows that (c) is correct.

• The language A = {ε} has A∗ = {ε}, which is finite, so (a) is incorrect.

• The language A = {ε, a} has A ◦ A = {ε, a, aa} 6= A, making (b) incorrect.
The same language A has A∗ = { an | n ≥ 0} 6= A, so (d) is incorrect.
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1.9. Answer: (a).

• Slide 1-95 shows that L must be regular, so (a) is correct, and (b) and (c) are
incorrect.

• For the language L1 = {a}, the string aa ∈ L1 but aa 6∈ L1, making (d)
incorrect.

1.10. Answer: (h).

• The regular expression (0∪ 1)∗(01∪ 10) cannot generate the string 1 ∈ L, so
(i) is incorrect.

• The regular expression (0 ∪ 1)∗(0 ∪ 1 ∪ 01 ∪ 10) generates the string 00 6∈ L,
so (ii) is incorrect.

• The regular expression (0 ∪ 1)∗(01 ∪ 10) ∪ 0 ∪ 1 cannot generate the string
ε ∈ L, so (iii) is incorrect.

2. (a) (a ∪ b)∗bab
There are infinitely many other correct regular expressions for this language, such
as Σ∗bab

or (ε ∪ a ∪ b)∗bab
or bab ∪ (a ∪ b)(a ∪ b)∗bab
or bab ∪ abab ∪ bbab ∪ (a ∪ b)∗bab
or (a∗b∗)∗bab or . . . .

There are also infinitely many incorrect regular expressions. For example, the
regular expression (bab)∗ is wrong because it can’t generate abab ∈ A nor bbab ∈ A;
it also incorrectly generates ε 6∈ A. Also, a∗b∗aba is wrong it can’t generate
bababa ∈ A.

(b) aa∗ ∪ aab∗aa∗ ∪ bb∗aa∗

There are infinitely many other correct regular expressions for this language, such
as (a ∪ aab∗a ∪ bb∗a)a∗

or (a ∪ (aa ∪ b)b∗a)a∗

or (a(ε ∪ ab∗a) ∪ bb∗a)a∗ or . . .

(c) After performing the one step, the CFG is then

S0 → S

S → A0AS | 0AS | A0S | 0S | 0AS1S | 0S1S | ε

A → 1A0S | 10S

(d) (Slides 1-32 and 1-33) Given a DFA M1 = (Q1,Σ, δ1, q1, F1) for language A1 and
a DFA M2 = (Q2,Σ, δ2, q2, F2) for language A2, the language A3 = A1 ∪ A2 is
recognized by the DFA M3 = (Q3,Σ, δ3, q3, F3), with

• Q3 = Q1 ×Q2,

• δ3((x, y), ℓ) = (δ1(x, ℓ), δ2(y, ℓ)) for (x, y) ∈ Q3 and ℓ ∈ Σ,

• q3 = (q1, q2), and

• F3 = (F1 ×Q2) ∪ (Q1 × F2) = { (x, y) ∈ Q3 | x ∈ F1 or y ∈ F2 }.
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3. A DFA for C is below:
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4. (a) G = (V,Σ, R, S) with set of variables V = {S,W,X, Y, Z}, where S is the start
variable; set of terminals Σ = {a, b, c}; and rules

S → WX | Y Z

W → cWa | ε

X → bX | ε

Y → cY | ε

Z → aZb | ε

Starting from variable W , the derived string will be in A1 = { cnan | n ≥ 0 }.
Starting from variable X , the derived string will be in A2 = L(b∗). So if S ⇒ WX

is the first step taken in a derivation, then the resulting string will be in the
language B1 = A1 ◦ A2 = { cnanbk | n ≥ 0, k ≥ 0 }.

Similarly, starting from the variable Y , the derived string will be in A3 = L(c∗).
Starting from the variable Z, the derived string will be in A4 = { anbn | n ≥ 0 }.
So if S ⇒ Y Z is the first step taken in a derivation, then the resulting string will
be in the language B2 = { cianbn | i ≥ 0, n ≥ 0}. Finally, we get L = B1 ∪B2.

There are infinitely many other correct CFGs for L.

(b) There are infinitely many correct PDAs for L. Here is one:

q1

q2 q3 q4

q5 q6 q7 q8

ε, ε → $
ε, ε → ε

ε, ε → $

c, ε → c a, c → ε

ε, $ → ε

b, ε → ε

ε, ε → ε

c, ε → ε

ε, ε → ε

a, ε → a b, a → ε

ε, $ → ε

The PDA has a nondeterministic branch at q1.
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• If the string is ciajbk with i = j, then the PDA can accept the string by first
taking the branch from q1 to q2.

• If the string is ciajbk with j = k, then the PDA can accept the string by first
taking the branch from q1 to q5.

Yet another approach uses the algorithm from Lemma 2.21 to convert the CFG
in part (a) into a PDA.

q0 q1

q2

q4

q5

q6

q7 q8

q9

q10

q11

q3
ε, ε → $

ε, ε → S

ε, S → X

ε, ε → W

ε, S → Z

ε, ε → Y

ε, W → a

ε, ε → W

ε, ε → c

ε, X → X

ε, ε → b

ε, Y → Y

ε, ε → c

ε, Z → b

ε, ε → Z

ε, ε → a

ε, W → ε

ε, X → ε

ε, Y → ε

ε, Z → ε

a, a → ε

b, b → ε

c, c → ε

ε, $ → ε

Note that

• The path q2 → q4 → q2 corresponds to the rule S → WX .

• The path q2 → q5 → q2 corresponds to the rule S → Y Z.

• The path q2 → q6 → q7 → q2 corresponds to the rule W → cWa.

• The path q2 → q8 → q2 corresponds to the rule X → bX .

• The path q2 → q9 → q2 corresponds to the rule Y → cY .

• The path q2 → q10 → q11 → q2 corresponds to the rule Z → aZb.

5. Language A = { ciajbk | i, j, k ≥ 0, and i = j or j = k } is nonregular. We prove this
by contradiction. Suppose that A is a regular language. Let p be the “pumping length”
of the Pumping Lemma. Consider the string s = cpap. Note that s ∈ A because the
numbers of c’s and a’s are equal, and |s| = 2p ≥ p, so the Pumping Lemma will hold.
Thus, there exists strings x, y, and z such that s = xyz and

5



(a) xyiz ∈ A for each i ≥ 0,

(b) |y| > 0,

(c) |xy| ≤ p.

Since the first p symbols of s are all c’s, the third property implies that x and y consist
only of c’s. So z will be the rest of the c’s, followed by ap. The second property states
that |y| > 0, so y has at least one c. More precisely, we can then say that

x = cj for some j ≥ 0,

y = ck for some k ≥ 1,

z = cmap for some m ≥ 0.

Since cpap = s = xyz = cjckcmap = cj+k+map, we must have that

j + k +m = p and k ≥ 1.

The first property implies that xy2z ∈ A, but

xy2z = cjckckcmap

= cp+kap 6∈ A

since p+ k > p because j + k +m = p and k ≥ 1, so the number of c’s in the pumped
string xy2z doesn’t match the number of a’s, and the number of a’s doesn’t match the
number of b’s (none). Because the pumped string xy2z 6∈ A, we have a contradiction.
Therefore, A is a nonregular language.

Note that if you instead chose the string s = cpapbp ∈ A, you would not get a contra-
diction. This is because pumping up or down leads to the number of c’s changing, but
the number of a’s and b’s remain the same and equal. Thus, the pumped string is still
in the language, so there is no contradiction.

Another possible string that will result in a contradiction is s = apbp ∈ A, where
|s| = 2p > p. Then splitting s = xyz satisfying properties (ii) and (iii) of the pumping
lemma will lead to

x = aj for some j ≥ 0,

y = ak for some k ≥ 1,

z = ambp for some m ≥ 0,

where j + k +m = p. Property (i) of the pumping lemma states that xyyz ∈ A, but
xyyz = ap+kbp 6∈ A because k ≥ 1, giving a contradiction.
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