Midterm Exam 1
CS 341-006: Foundations of Computer Science II - Spring 2023, face-to-face section Prof. Marvin K. Nakayama

Print family (or last) name: \qquad

Print given (or first) name: \qquad

I have read and understand all of the instructions below, and I will obey the University Policy on Academic Integrity.

Signature and Date

- This exam has 8 pages in total, numbered 1 to 8 . Make sure your exam has all the pages.
- Note the number written on the upper right-hand corner of the first page. On the sign-up sheet being passed around, print your name next to this number.
- This exam will be 1 hour and 20 minutes in length.
- This is a closed-book, closed-note exam. Electronic devices (e.g., cellphone, smart watch, calculator) are not allowed.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. Only what is written in the answer space will be graded, and points will be deducted for any scratch work in the answer space. Use the scratch-work area or the backs of the exam sheets to work out your answers before filling in the answer space.
2. DFA stands for deterministic finite automaton; NFA stands for nondeterministic finite automaton; PDA stands for push-down automaton; CFG stands for context-free grammar.
3. For any state diagrams that you draw, you must include all states and transitions.
4. For any proofs, be sure to provide a step-by-step argument, with justifications for every step. If you are asked to prove a result X, you may use in your proof of X any other result Y without proving Y. However, make it clear what the other result Y is that you are using; e.g., write something like, "By the result that $A^{* *}=A^{*}$, we know that"

Problem	1	2	3	4	5	Total
Points						

1. [20 points, Multiple Choice] For each of the following questions, circle the letter of the correct answer.
1.1. If A and B are nonregular languages, then
(a) $A \cap B$ must be nonregular.
(b) $A \cup B$ can be finite.
(c) $A \cup B$ must be nonregular.
(d) $A \cup B$ can be regular.
(e) none of the above.
1.2. If a language L is recognized by a PDA, then
(a) L must be finite.
(b) L must be infinite.
(c) L can be finite and also it can be infinite.
(d) does not have a context-free grammar in Chomsky normal form.
(e) none of the above.
1.3. If A and B are languages with B context-free and $A \subseteq B$, then
(a) A must be regular.
(b) A must be nonregular.
(c) A must be a context-free language.
(d) A must be non-context-free.
(e) none of the above.
1.4. If a finite number of strings is added to a nonregular language A, then the resulting language B satisfies which of the following?
(a) B must be a regular language.
(b) B must be a nonregular language.
(c) B must be a non-context-free language.
(d) B must have a context-free grammar.
(e) none of the above.
1.5. The language $A=\left\{b^{n} a^{n} \mid n \geq 0\right\}$ satisfies which of the following?
(a) A has regular expression $b^{*} a^{*}$.
(b) A has regular expression $(b a)^{*}$.
(c) A has CFG $G=(V, \Sigma, R, S)$, with $V=\{S\}, \Sigma=\{a, b\}, R=\{S \rightarrow b S a\}$, and starting variable S.
(d) A is not context-free.
(e) none of the above.
1.6. The class of context-free languages satisfies which of the following:
(a) it is closed under intersection.
(b) it is closed under complementation.
(c) it is closed under concatenation.
(d) it contains every possible language.
(e) it does not include every regular language.
(f) none of the above.
1.7. If A is a regular language, then
(a) A is closed under concatenations.
(b) A must be context-free.
(c) A must be finite.
(d) all of the above.
(e) none of the above.
1.8. If A is a language with $\varepsilon \in A$, then
(a) A^{*} must be infinite.
(b) $A \circ A=A$.
(c) $A^{+}=A^{*}$.
(d) $A^{*}=A$.
(e) none of the above.
1.9. If L is a finite language, then
(a) L must be regular.
(b) L must be context-free, but not regular.
(c) L must be non-context-free and nonregular.
(d) L must be closed under Kleene star.
(e) none of the above.
1.10. For $\Sigma=\{0,1\}$, we say that a string over Σ contains a double symbol if 00 or 11 is a substring. Let L be the language of all strings over Σ that do not end in a double symbol. Consider the following regular expressions:
(i) $(0 \cup 1)^{*}(01 \cup 10)$
(ii) $(0 \cup 1)^{*}(0 \cup 1 \cup 01 \cup 10)$
(iii) $(0 \cup 1)^{*}(01 \cup 10) \cup 0 \cup 1$

Which of the following statements is correct?
(a) Only regular expression (i) generates L.
(b) Only regular expression (ii) generates L.
(c) Only regular expression (iii) generates L.
(d) Only regular expressions (i) and (ii) generate L.
(e) Only regular expressions (i) and (iii) generate L.
(f) Only regular expressions (ii) and (iii) generate L.
(g) All 3 regular expressions generate L.
(h) None of the 3 regular expressions generates L.
2. [20 points] Give short answers to each of the following parts. Each answer should be at most a few sentences. Be sure to define any notation that you use.
(a) For $\Sigma=\{a, b\}$, let A the the language of all strings over Σ that end in bab. Give a regular expression for A.

Answer: \qquad
(b) Give a regular expression for the language recognized by the NFA below.

Answer:

(c) Suppose that we are in the process of converting a CFG G with $\Sigma=\{0,1\}$ into Chomsky normal form. We have already applied some steps in the process, and we currently have the following CFG:

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow A 0 A S|0 A S 1 S| \varepsilon \\
A & \rightarrow 1 A 0 S \mid \varepsilon
\end{aligned}
$$

In the next step, we want to remove the ε-rule $A \rightarrow \varepsilon$. Give the CFG after carrying out just this one step.
(d) Suppose that A_{1} is a language defined by a DFA $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and A_{2} is a language defined by a DFA $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$, where the alphabet Σ is the same for both languages. Let $A_{3}=A_{1} \cup A_{2}$. Give a DFA M_{3} for A_{3} in terms of M_{1} and M_{2}. You do not have to prove the correctness of your DFA M_{3}, but do not give just an example.
3. [15 points] Let N be the following NFA with $\Sigma=\{a, b\}$, and let $C=L(N)$.

Give a DFA for C. You only need to draw the state diagram (graph); do not give the 5 -tuple.

Scratch-work area
4. [30 points] Consider the language

$$
L=\left\{c^{i} a^{j} b^{k} \mid i, j, k \geq 0, \text { and } i=j \text { or } j=k\right\} .
$$

(a) Give a context-free grammar G for L. Be sure to specify G as a 4-tuple $G=(V, \Sigma, R, S)$.
(b) Give a PDA for L. You only need to draw the state diagram (graph); you do not need to give the 6 -tuple for your PDA.

Scratch-work area

5. [15 points] Recall the pumping lemma for regular languages:

Theorem: If L is a regular language, then there exists a pumping length p where, if $s \in L$ with $|s| \geq p$, then s can be split into three pieces $s=x y z$ such that (i) $x y^{i} z \in L$ for each $i \geq 0$, (ii) $|y| \geq 1$, and (iii) $|x y| \leq p$.
Let $A=\left\{c^{i} a^{j} b^{k} \mid i, j, k \geq 0\right.$, and $i=j$ or $\left.j=k\right\}$. Is A a regular or nonregular language? If A is regular, give a regular expression for A. If A is not regular, prove that it is a nonregular language.

Circle one: Regular Language Nonregular Language

