
CS 341-008, Spring 2023, Face-to-Face Section

Solutions for Midterm 1

1. Multiple choice.

1.1. Answer: (c).

• The languages L1 = { anbncn | n ≥ 0 } and L2 = { bnancn | n ≥ 0 } are
non-context-free languages (slide 2-96), with L1 ∩ L2 = {ε}, which is regular
because it is finite (slide 1-95). Thus, the intersection is also context-free by
Corollary 2.32, making (a) incorrect.

• If L1 = L2 = { anbncn | n ≥ 0 }, then L1 ∩ L2 = L1, which is non-regular and
non-context-free, so (b) and (d) are incorrect.

• The previous two examples show that (c) is correct.

1.2. Answer: (e).

• Consider the language A = { 0n1n | n ≥ 0 }, which we know is nonregular
(slide 1-105). Now let L = A∗, which we can prove is also nonregular by
the pumping lemma, which shows that (a) is incorrect. For an outline of the
proof that L is nonregular, suppose that L is regular, and consider the string
s = 0p1p ∈ L, where p is the pumping length. Note that |s| = 2p ≥ p, so
the conclusions of the pumping lemma will hold. Thus, we can write s = xyz

with x = 0j for j ≥ 0, y = 0k for k ≥ 1, and z = 0m1p for m ≥ 0, where
j + k+m = p. But the pumped string xyyz = 0p+k1p cannot be written as a
concatenation of zero of more strings from A. This contradicts the pumping
lemma so L is nonregular, showing that (a) is incorrect. Also, let B = A, so
A ∩ B = A, which is nonregular, so (c) is also incorrect.

• For the same language A = { 0n1n | n ≥ 0 }, let B = {ε}, so A ◦ B = A,
which we know is nonregular. Thus, (b) is incorrect.

1.3. Answer: (d).

• Slide 2-99 proves that A is non-context-free, so (d) is correct.

• Because A is non-context-free, Theorem 2.20 shows that A cannot have a
PDA, making (c) incorrect.

• Also, A being non-context-free implies that A is also not regular (Corollary
2.32), so (a) and (b) are incorrect. We can see that the regular expression
(0 ∪ 1)∗(0 ∪ 1)∗ in (a) is wrong because it generates the string 01 6∈ A.

1.4. Answer: (c).

• HW 6, problem 2a, shows that the class of CFLs is not closed under intersec-
tion, so (a) is incorrect.

• HW 6, problem 2b, shows that the class of CFLs is not closed under comple-
mentation, so (b) is incorrect.

• HW 5, problem 3b, shows that (c) is correct.

• The language { anbncn | n ≥ 0 } is not context-free by slide 2-96, so not all
languages are context-free, so (d) is incorrect.
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• By Corollary 2.32, every regular language is also context-free, so (e) is incor-
rect.

1.5. Answer: (c).

• The class of context-free languages is closed under union (Homework 5, prob-
lem 3a), so B ∪ C is context-free. Also, the class of context-free languages
is closed under concatenation (Homework 5, problem 3b), ensuring that
A(B ∪ C) is context-free, so (c) is correct.

• We know that the class of context-free languages is not closed under com-
plementation (Homework 6, problem 2b), so there exists some context-free
language D whose complement D is not context-free. Also, let B = C = {ε},
which is finite, so B and C are regular (slide 1-95), making them also context-
free (Corollary 2.32). Thus, B ∪ C = {ε}, and let A = D, so A(B ∪ C) =
A = D is non-context free, making (a) incorrect.

• Let A be any regular language, so A is also context-free (Corollary 2.32). As
A is regular, A is also regular (Homework 2, problem 3), so A is also context-
free (Corollary 2.32). The class of context free languages is closed under
concatenation (Homework 5, problem 3b) and union (Homework 5, problem
3a), so in this case when A is regular, we have that A(B ∪C) is context-free,
showing (b) is incorrect.

• For Σ = {a, b}, let A be the language of all strings over Σ that don’t begin
with a. Now A has regular expression ε ∪ b(a ∪ b)∗, so Kleene’s Theorem
implies that A is a regular language, making A also context-free (Corollary
2.32). Also, A is the set of all strings over Σ that begin with a; e.g., a ∈ A.
Also, let B = {b} and C = {b}, each of which are finite so also regular (slide
1-95) and context-free (Corollary 2.32). Also, B ∪ C = {b}. Then, we have
that ab ∈ A(B ∪ C), but ab 6∈ (B ∪ C)A, making (d) incorrect.

1.6. Answer: (h).

• The regular expression (00 ∪ 11)∗ cannot generate the string 1010 ∈ L, so (i)
is incorrect.

• The regular expression (0(00 ∪ 11)∗0 ∪ 1(00 ∪ 11)∗1)∗ cannot generate the
string 0101 ∈ L, so (ii) is incorrect.

• The regular expression (00∪ 11 ∪ 0(00∪11)∗0 ∪ 1(00∪11)∗1)∗ cannot generate
the string 0101 ∈ L, so (iii) is incorrect.

1.7. Answer: (d).

• The language A = { anbncn | n ≥ 0 } is non-context-free (slide 2-96) and
infinite, so (a) is incorrect. In fact, if A is non-context-free language, A must
be infinite. To see why, if A were finite, then A would be regular (slide 1-95),
which would imply A is context-free (Corollary 2.32).

• A = { anbncn | n ≥ 0 } is also nonregular (Corollary 2.32), so (b) is incorrect.

• A = { anbncn | n ≥ 0 } is non-context-free, and abc ∈ A but (abc)R = cba 6∈ A,
so A is not closed under reversals, making (c) incorrect.
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1.8. Answer: (c).

• By Theorem 2.20, a language is context-free if and only if some PDA recog-
nizes it, so we can answer the question by considering CFLs. The language
{ anbn | n ≥ 0 } is context-free but infinite, so (a) is incorrect.

• The language {ε} is finite, so it is regular (slide 1-95), and Corollary 2.32
ensures it is also context-free, so (b) is incorrect.

• By Theorem 2.20, a language is context-free if and only if some PDA recog-
nizes it, and Theorem 2.9 then guarantees that the language has a CFG in
Chomsky normal form, so (d) is incorrect.

1.9. Answer: (c).

• Kleene’s Theorem (Theorem 1.54) implies that L must be regular, so (a) is
incorrect.

• Because L must be regular, Corollary 2.32 ensures L is also context-free, so
(c) is correct and (b) is incorrect.

• For the language L with regular expression ab∗, we have that x = ab ∈ L and
y = abb ∈ L, but xy = ababb 6∈ L, so L is not closed under concatenation,
making (d) incorrect.

1.10. Answer: (d).

• Consider A = { 0n1n | n ≥ 0 }, which is nonregular (slide 1-105). Let C =
{ 02n+112n+1 | n ≥ 0 }, so C is the set of strings in A with an odd number
of 0s followed by exactly the same number of 1s, and C is infinite. Now
let B = A − C = { 02n12n | n ≥ 0 }, so B is the set of strings in A with
an even number of 0s followed by exactly the same number of 1s. We can
show that B is nonregular by the pumping lemma, as follows. Suppose that
B is regular, and consider s = 02p12p ∈ B, where p is the pumping length.
Note that |s| = 4p ≥ p, so the conclusions of the pumping lemma must hold.
Splitting the string s = xyz as in the pumping lemma leads to x = 0j for
some j ≥ 0, y = 0k for some k ≥ 1, and z = 0m0p12p for some m ≥ 0, where
j+k+m = p. But the pumped string xyyz = 0j0k0k0m0p12p = 02p+k12p 6∈ B,
which is a contradiction. Thus, B is nonregular, showing (a) is incorrect.

• Consider A = { 0n1n | n ≥ 0 }, which is nonregular (slide 1-105), and let
C = A, which is infinite. Then B = A − C = ∅, which is regular (B has
regular expression ∅, so B is regular by Kleene’s theorem), so (b) is incorrect.
Also, B then is also context-free (Corollary 2.32), so (c) is incorrect.

2. (a) (a ∪ b)((a ∪ b)(a ∪ b))∗.
There are infinitely many other correct regular expressions for this language, such
as ((a ∪ b)(a ∪ b))∗(a ∪ b)
or (a ∪ b)(aa ∪ ab ∪ ba ∪ bb)∗

or a((a ∪ b)(a ∪ b))∗ ∪ b((a ∪ b)(a ∪ b))∗ or . . . .
Some incorrect answers include

• (a ∪ b)∗((a ∪ b)(a ∪ b))∗, which generates ε 6∈ A and ab 6∈ A;
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• (a ∪ b)∗(aa ∪ bb)∗, which can’t generate aba ∈ A;

• a(aa)∗ ∪ b(bb)∗, which can’t generate aba ∈ A;

• ((a ∪ b)(a ∪ b)(a ∪ b))∗, which generates bbbbbb 6∈ A;

• (a ∪ b)n for n odd, which is not a regular expression.

(b) a∗(b(a ∪ b) ∪ ε)b∗(a ∪ ε)a∗. Another regular expression is a∗b(a ∪ b)b∗(a ∪ ε)a∗ ∪
a∗b∗(a ∪ ε)a∗. There are infinitely many correct regular expressions for this lan-
guage.

(c) As on slide 1-63 of the notes, if A1 is defined by NFA N1 and A2 is defined by
NFA N2, then an NFA N for A3 = A1 ◦ A2 is as below:

N1 N2

N

ε

ε

ε

(d) (Homework 5, problem 3c.) Assume that S3 6∈ V1. Then a CFG for A3 = A∗

1 is
G3 = (V3,Σ, R3, S3) with V3 = V1 ∪ {S3} and R3 = R1 ∪ {S3 → S1S3 | ε }.

3. A DFA for C is below:
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1

2, 3

3

1, 3

∅

b

a

b

a

b

a

b

a

a, b

4. (a) For Σ = {a, bc}, let L = { bicjak | i, j, k ≥ 0, and i + j = k } be the language
given in the problem. A CFG G = (V,Σ, R, S) for L has V = {S,X} with S the
starting variable, Σ = {a, b, c}, and rules

S → bSa | X

X → cXa | ε

There are infinitely many other correct CFGs for L.

An incorrect CFG for L has rules S → bSa | cSa | ε, which can derive S ⇒ cSa ⇒
cbSaa ⇒ cbaa 6∈ L.

(b) There are infinitely many correct PDAs for L. Here is one:

q1 q2 q3 q4 q5
ε, ε → $

b, ε → x

ε, ε → ε

c, ε → x

ε, ε → ε

a, x → ε

ε, $ → ε

In the above PDA,

• state q2 pushes an x for each b read,

• state q3 pushes an x for each c read,

• state q4 pops an x for each a read to match the b’s read in state q2 and the
c’s read in state q3,

• transition from q4 to q5 pops $ to make sure stack is empty.

Another approach uses the algorithm from Lemma 2.21 to convert the CFG in
part (a) into a PDA.
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q0 q1

q2q4

q5

q6 q7

q3
ε, ε → $

ε, ε → S

ε, S → a

ε, ε → S ε, ε → b

ε, S → a

ε, ε → S

ε, ε → c

ε, S → X

ε, X → ε

a, a → ε

b, b → ε

c, c → ε ε, $ → ε

Note that

• The path q2 → q4 → q5 → q2 corresponds to the rule S → bSa, where the
symbols on the right side of the rule are pushed in reverse order.

• The path q2 → q6 → q7 → q2 corresponds to the rule X → cSa, where the
symbols on the right side of the rule are pushed in reverse order.

5. Language A = { bicjak | i, j, k ≥ 0 and i + j = k } is nonregular. We prove this by
contradiction. Suppose that A is a regular language. Let p be the “pumping length”
of the Pumping Lemma. Consider the string s = bpap, where s ∈ A because s = bicjak

for i = k = p and j = 0. Also, we have that |s| = 2p ≥ p, so the Pumping Lemma will
hold. Thus, there exist strings x, y, and z such that s = xyz and

(a) xyiz ∈ A for each i ≥ 0,

(b) |y| > 0,

(c) |xy| ≤ p.

Because the first p symbols of s are all b’s, the third property implies that x and y

consist only of b’s. So z will be the rest of the first set of b’s (possibly none), followed
by ap. The second property states that |y| > 0, so y has at least one b. More precisely,
we can then say that

x = bj for some j ≥ 0,

y = bk for some k ≥ 1,

z = bmap for some m ≥ 0.
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Because
bpap = s = xyz = bjbkbmap = bj+k+map,

we must have that
j + k +m = p and k ≥ 1.

The first property implies that the pumped string xy2z ∈ A, but

xy2z = bjbkbkbmcp

= bp+kap 6∈ A

since k ≥ 1, so in the pumped string, the sum of the number of b’s and the number of
c’s does not equal the number of a’s. This contradicts the first property of the pumping
lemma. Therefore, A is a nonregular language.

Another possible string that will result in a contradiction is s = bpcpa2p ∈ A, where
|s| = 4p > p. Then splitting s = xyz satisfying properties (ii) and (iii) of the pumping
lemma will lead to

x = bj for some j ≥ 0,

y = bk for some k ≥ 1,

z = bmcpa2p for some m ≥ 0,

where j + k +m = p. Property (i) of the pumping lemma states that xyyz ∈ A, but
xyyz = bp+kcpa2p 6∈ A because p+ k + p 6= 2p since k > 0, giving a contradiction.
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