CS 341-008, Spring 2023, Face-to-Face Section
Solutions for Midterm 1

1. Multiple choice.

1.1. Answer: (c).

The languages Ly = {a"b"c" | n > 0} and Ly = {b"a"c" | n > 0} are
non-context-free languages (slide 2-96), with Ly N Ly = {e}, which is regular
because it is finite (slide 1-95). Thus, the intersection is also context-free by
Corollary 2.32, making (a) incorrect.

If Ly = Ly ={a"b"c" | n >0}, then Ly N Ly = Ly, which is non-regular and
non-context-free, so (b) and (d) are incorrect.

The previous two examples show that (c) is correct.

1.2. Answer: (e).

Consider the language A = {0"1" | n > 0}, which we know is nonregular
(slide 1-105). Now let L = A* which we can prove is also nonregular by
the pumping lemma, which shows that (a) is incorrect. For an outline of the
proof that L is nonregular, suppose that L is regular, and consider the string
s = 0P1? € L, where p is the pumping length. Note that |s| = 2p > p, so
the conclusions of the pumping lemma will hold. Thus, we can write s = zyz
with z = 0/ for j > 0, y = 0¥ for £ > 1, and z = 0™1” for m > 0, where
j+k+m = p. But the pumped string zyyz = 0P*¥1P cannot be written as a
concatenation of zero of more strings from A. This contradicts the pumping
lemma so L is nonregular, showing that (a) is incorrect. Also, let B = A, so
AN B = A, which is nonregular, so (c) is also incorrect.

For the same language A = {0"1" | n > 0}, let B = {e}, so Ao B = A,
which we know is nonregular. Thus, (b) is incorrect.

1.3. Answer: (d).

Slide 2-99 proves that A is non-context-free, so (d) is correct.

Because A is non-context-free, Theorem 2.20 shows that A cannot have a
PDA, making (c) incorrect.

Also, A being non-context-free implies that A is also not regular (Corollary
2.32), so (a) and (b) are incorrect. We can see that the regular expression
(OU1)*(0U1)* in (a) is wrong because it generates the string 01 ¢ A.

1.4. Answer: (c).

HW 6, problem 2a, shows that the class of CFLs is not closed under intersec-
tion, so (a) is incorrect.

HW 6, problem 2b, shows that the class of CFLs is not closed under comple-
mentation, so (b) is incorrect.

HW 5, problem 3b, shows that (c) is correct.

The language {a™b"c" | n > 0} is not context-free by slide 2-96, so not all
languages are context-free, so (d) is incorrect.
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e By Corollary 2.32, every regular language is also context-free, so (e) is incor-
rect.

1.5. Answer: (c).

e The class of context-free languages is closed under union (Homework 5, prob-
lem 3a), so B U C' is context-free. Also, the class of context-free languages
is closed under concatenation (Homework 5, problem 3b), ensuring that
A(BUC) is context-free, so (c) is correct.

e We know that the class of context-free languages is not closed under com-
plementation (Homework 6, problem 2b), so there exists some context-free
language D whose complement D is not context-free. Also, let B = C' = {¢},
which is finite, so B and C are regular (slide 1-95), making them also context-
free (Corollary 2.32). Thus, BUC = {e}, and let A = D, so A(BUC) =

A = D is non-context free, making (a) incorrect.

e Let A be any regular language, so A is also context-free (Corollary 2.32). As
A is regular, A is also regular (Homework 2, problem 3), so A is also context-
free (Corollary 2.32). The class of context free languages is closed under
concatenation (Homework 5, problem 3b) and union (Homework 5, problem
3a), so in this case when A is regular, we have that A(BUC) is context-free,
showing (b) is incorrect.

e For ¥ = {a,b}, let A be the language of all strings over ¥ that don’t begin
with a. Now A has regular expression € U b(a U b)*, so Kleene’s Theorem
implies that A is a regular language, making A also context-free (Corollary
2.32). Also, A is the set of all strings over ¥ that begin with a; e.g., a € A.
Also, let B = {b} and C = {b}, each of which are finite so also regular (slide
1-95) and context-free (Corollary 2.32). Also, BU C = {b}. Then, we have
that ab € A(BUC), but ab ¢ (B U C)A, making (d) incorrect.

1.6. Answer: (h).

e The regular expression (00U 11)* cannot generate the string 1010 € L, so (i)
is incorrect.

e The regular expression (0(00 U 11)*0 U 1(00 U 11)*1)* cannot generate the
string 0101 € L, so (ii) is incorrect.

e The regular expression (00U 11 U0(00U11)*0 U 1(00U11)*1)* cannot generate
the string 0101 € L, so (iii) is incorrect.

1.7. Answer: (d).
e The language A = {a"b"c" | n > 0} is non-context-free (slide 2-96) and
infinite, so (a) is incorrect. In fact, if A is non-context-free language, A must
be infinite. To see why, if A were finite, then A would be regular (slide 1-95),
which would imply A is context-free (Corollary 2.32).

o A={a""c" | n >0} is also nonregular (Corollary 2.32), so (b) is incorrect.
o A= {a""c" | n >0} is non-context-free, and abc € A but (abc)® = cba & A,
so A is not closed under reversals, making (c) incorrect.



1.8. Answer: (c).

e By Theorem 2.20, a language is context-free if and only if some PDA recog-
nizes it, so we can answer the question by considering CFLs. The language
{a"" | n > 0} is context-free but infinite, so (a) is incorrect.

e The language {e} is finite, so it is regular (slide 1-95), and Corollary 2.32
ensures it is also context-free, so (b) is incorrect.

e By Theorem 2.20, a language is context-free if and only if some PDA recog-
nizes it, and Theorem 2.9 then guarantees that the language has a CFG in
Chomsky normal form, so (d) is incorrect.

1.9. Answer: (c).

e Kleene’s Theorem (Theorem 1.54) implies that L must be regular, so (a) is
incorrect.

e Because L must be regular, Corollary 2.32 ensures L is also context-free, so
(¢) is correct and (b) is incorrect.

e For the language L with regular expression ab*, we have that x = ab € L and
y = abb € L, but xy = ababb ¢ L, so L is not closed under concatenation,
making (d) incorrect.

1.10. Answer: (d).

e Consider A = {0"1" | n > 0}, which is nonregular (slide 1-105). Let C' =
{02112t |y > 0}, so C is the set of strings in A with an odd number
of 0s followed by exactly the same number of 1s, and C' is infinite. Now
let B=A—-C = {021?" | n > 0}, so B is the set of strings in A with
an even number of Os followed by exactly the same number of 1s. We can
show that B is nonregular by the pumping lemma, as follows. Suppose that
B is regular, and consider s = 01?7 € B, where p is the pumping length.
Note that |s| = 4p > p, so the conclusions of the pumping lemma must hold.
Splitting the string s = zyz as in the pumping lemma leads to = 0/ for
some j > 0, y = 0* for some k& > 1, and z = 0™0P1% for some m > 0, where
j+k+m = p. But the pumped string zyyz = 0/0*0k0m0P1%» = 0*++1%» ¢ B,
which is a contradiction. Thus, B is nonregular, showing (a) is incorrect.

e Consider A = {0"1™ | n > 0}, which is nonregular (slide 1-105), and let
C' = A, which is infinite. Then B = A — C = (), which is regular (B has
regular expression (), so B is regular by Kleene’s theorem), so (b) is incorrect.
Also, B then is also context-free (Corollary 2.32), so (c) is incorrect.

2. (a) (aUb)((aUb)(aUb))*.
There are infinitely many other correct regular expressions for this language, such
as ((aUb)(aUb))*(aUb)
or (aUb)(aaUabUba U bb)*
or a((aUb)(aUb))* Ub((aUb)(aUb))* or ....

Some incorrect answers include

e (aUb)*((aUb)(aUb))*, which generates ¢ ¢ A and ab & A;



e (aUb)*(aa Ubb)*, which can’t generate aba € A;

e a(aa)* U b(bb)*, which can’t generate aba € A;

e ((aUb)(aUb)(aUb))*, which generates bbbbbb ¢ A;

e (aUb)™ for n odd, which is not a regular expression.

(b) a*(b(aUb) Ue)b*(aU e)a*. Another regular expression is a*b(a U b)b*(a U €)a* U
a*b*(a Ue)a*. There are infinitely many correct regular expressions for this lan-
guage.

(c) As on slide 1-63 of the notes, if A; is defined by NFA N; and A, is defined by
NFA N,, then an NFA N for A3 = A; o A, is as below:
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(d) (Homework 5, problem 3c.) Assume that S3 ¢ V. Then a CFG for A3 = A} is
G3 = (‘/3727R37S3) with ‘/3 = ‘/1 U {53} and R3 = R1 U {Sg — 5153 | 6}.

3. A DFA for C is below:

S



(a) For ¥ = {a,bc}, let L = {bicia® | i,j,k > 0, and i + j = k} be the language
given in the problem. A CFG G = (V, %, R, S) for L has V = {S, X} with S the
starting variable, 3 = {a, b, ¢}, and rules

S —bSa | X
X —cXale

There are infinitely many other correct CFGs for L.

An incorrect CFG for L has rules S — bSa | ¢Sa | e, which can derive S = ¢Sa =
cbSaa = cbaa & L.

(b) There are infinitely many correct PDAs for L. Here is one:

@5,5—>$ D) e @6,8—)8 ®€,$—>€

b e —x C,E—T a, T — €

In the above PDA,

e state ¢o pushes an x for each b read,
e state g3 pushes an x for each ¢ read,

e state ¢4 pops an x for each a read to match the b’s read in state ¢o and the
c’s read in state ¢s,

e transition from ¢4 to g5 pops $ to make sure stack is empty.

Another approach uses the algorithm from Lemma 2.21 to convert the CFG in
part (a) into a PDA.
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Note that

e The path ¢ — g4 — ¢5 — @2 corresponds to the rule S — bSa, where the
symbols on the right side of the rule are pushed in reverse order.

e The path ¢o — ¢s — g7 — ¢o corresponds to the rule X — ¢Sa, where the
symbols on the right side of the rule are pushed in reverse order.

5. Language A = {b'c/a* | i,5,k > 0 and i + j = k} is nonregular. We prove this by
contradiction. Suppose that A is a regular language. Let p be the “pumping length”
of the Pumping Lemma. Consider the string s = b?a?, where s € A because s = b'c/a*
for i = k = p and j = 0. Also, we have that |s| = 2p > p, so the Pumping Lemma will
hold. Thus, there exist strings x, y, and z such that s = xyz and

(a) zy'z € A for each i > 0,

(b) |yl >0,

(c) |zyl < p.
Because the first p symbols of s are all b’s, the third property implies that x and y
consist only of b’s. So z will be the rest of the first set of b’s (possibly none), followed

by a?. The second property states that |y| > 0, so y has at least one b. More precisely,
we can then say that

x = U for some j > 0,
= b* for some k > 1,
z = b"a? for some m > 0.



Because ' _
WaP = s = zyz = B Fbma? = YHmgp,
we must have that

j+k+m=p and k2>1.
The first property implies that the pumped string zy%z € A, but

zy?z = VYR
WHka? & A

since k > 1, so in the pumped string, the sum of the number of b’s and the number of
¢’s does not equal the number of a’s. This contradicts the first property of the pumping
lemma. Therefore, A is a nonregular language.

Another possible string that will result in a contradiction is s = b’cPa® € A, where
|s| = 4p > p. Then splitting s = xyz satisfying properties (ii) and (iii) of the pumping
lemma will lead to

r = V for some j >0,
= b* for some k > 1,
2z = b™cPa® for some m > 0,

where j + k + m = p. Property (i) of the pumping lemma states that zyyz € A, but
ryyz = WTEPa® ¢ A because p + k + p # 2p since k > 0, giving a contradiction.



