
CS 341-010, Spring 2024, Face-to-Face Section
Solutions for Midterm 1

1. Multiple choice.

1.1. Answer: (c).
• The languages L1 = { anbncn | n ≥ 0 } and L2 = { bnancn | n ≥ 0 } are

non-context-free languages (slide 2-96), with L1 ∩L2 = {ε}, which is regular
because it is finite (slide 1-95), so (d) is incorrect. The intersection is also
context-free by Corollary 2.32, making (a) incorrect.

• If L1 = L2 = { anbncn | n ≥ 0 }, then L1 ∩L2 = L1, which is non-regular and
non-context-free, so (b) is incorrect.

• The previous two examples show that (c) is correct.

1.2. Answer: (c).
• Consider the language A = { 0n1n | n ≥ 0 }, which we know is nonregular

(slide 1-105). Now let L = A∗, which we can prove is also nonregular by the
pumping lemma, which will show To prove that L is nonregular, suppose for
contradiction that L is regular. Let p be the pumping length, and consider
the string s = 0p1p ∈ L. Note that |s| = 2p ≥ p, so the conclusions of the
pumping lemma will hold. Thus, we can write s = xyz with x = 0j for j ≥ 0,
y = 0k for k ≥ 1, and z = 0m1p for m ≥ 0, where j + k + m = p. But
the pumped string xyyz = 0p+k1p cannot be written as a concatenation of
zero of more strings from A. This contradicts the pumping lemma so L is
nonregular, showing that (a) is incorrect.

• For alphabet Σ = {0, 1}, let A = { 0n1n | n ≥ 0 }, which is nonregular (slide
1-105). Then A = Σ∗ − A, which we now prove is nonregular. Suppose for
contradiction that A is regular. Then the complement A of A must be regular
since the class of regular languages is closed under complementation (HW 2,
problem 3). But A = A, which is nonregular, giving a contradiction, so A is
nonregular, making (b) incorrect.

• For any language A over any alphabet Σ, we have that A = Σ∗ − A, and
A ∪ A = Σ∗, which is regular by Kleene’s Theorem (Theorem 1.54) because
it has a regular expression Σ∗. Thus (c) is correct.

1.3. Answer: (d).
• Slightly modifying HW 6, problem 4, shows that A is non-context-free, so

(d) is correct.
• Because A is non-context-free, Theorem 2.20 shows that A cannot have a

PDA, making (c) incorrect.
• Also, A being non-context-free implies that A is also not regular (Corollary

2.32), so (a) and (b) are incorrect. We can see that the regular expression
(000)∗(11)∗(0)∗ in (a) is wrong because it generates the string 000 6∈ A.
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1.4. Answer: (d).
Because A is recognized by an NFA, A must be regular by Corollary 1.40. Because
B has a regular expression, B must be regular by Kleene’s theorem (Theorem
1.54).

• We must then have that A◦B is regular because the class of regular languages
is closed under concatenation (Theorem 1.47), so (a) is incorrect.

• We must also then have that A ∪ B is regular because the class of regular
languages is closed under union (Theorem 1.45), so A ∪ B is recognized by
some DFA, making (b) incorrect.

• By HW 2, problem 5, A ∩B must be regular, so Corollary 2.32 ensures that
A∩B is also context-free, so (c) is incorrect. Also, (d) is correct by Theorem
2.20.

1.5. Answer: (d).
• Consider A = Σ∗ for Σ = {a, b}. Because A has regular expression (a ∪ b)∗,

Kleene’s theorem (Theorem 1.54) ensures that A is regular, so Corollary 2.32
implies that A is a CFL. Let C = { anbn | n ≥ 0 }, which is infinite and
nonregular (slide 1-105). Remove C from A to get B, so B = A − C =
Σ∗ −C = C, which we now show is nonregular. For a contradiction, suppose
that C is regular. Then the complement C of C must be regular because
the class of regular languages is closed under complements (HW 2, problem
3). But C = C, which is nonregular, giving a contradiction. So we have an
example where removing an infinite number of strings from a context-free
language A results in a nonregular language B, showing (a) is incorrect.

• Consider A = Σ∗ for Σ = {a, b}, so A is regular and context-free, and let
C = A, which is infinite. Then B = A − C = ∅, which is regular because
it is finite (slide 1-95), so (b) is incorrect. Also, B then is also context-free
(Corollary 2.32), so (c) is incorrect.

1.6. Answer: (b).
• Suppose that A has regular expression (aa)∗a, so A is the set of strings

of a’s of odd length. Because A has a regular expression, it is regular by
Kleene’s Theorem (Theorem 1.54). Note that a ∈ A and aaa ∈ A, but their
concatenation aaaa 6∈ A, so A is not closed under concatenation, showing that
(a) is incorrect, so (d) is also incorrect. (While the class of regular languages
is closed under concatenation by Theorem 1.47, this example shows that a
particular regular language may not be closed under concatenation.) Also,
the same language A is infinite, showing that (c) is incorrect.

• Corollary 2.32 shows that A must be context-free, and the class of context-
free languages is closed under concatenation (HW 5, problem 3b), so (b) is
correct.

1.7. Answer: (a).
• The class of languages recognized by NFAs is the same as the class of regular

languages by Corollary 1.40. Thus, this class of languages is closed under
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complementation (HW 2, problem 3). Hence, option (a) is correct.
• Since the class of regular languages is closed under intersection (HW 2, prob-

lem 5), option (b) is incorrect.
• The language { 0n1n | n ≥ 0 } is nonregular (slide 1-105), so it is not recog-

nized by any NFA (Corollary 1.40), making option (c) incorrect. Also, this
language is context-free (slide 2-5), making (d) incorrect.

1.8. Answer: (b).
• The language A has regular expression 1∗0∗, so Kleene’s Theorem (Theorem

1.54) implies that A is regular. Thus, (b) is correct, and (c) is incorrect. If
a language is non-context-free, then it must also be non-regular (Corollary
2.32), so (d) is incorrect.

• Each string 1i ∈ A for i ≥ 0, so A is infinite, making (a) incorrect.

1.9. Answer: (d).
• The class of context-free languages is closed under union (Homework 5, prob-

lem 3a), so B ∪ C is context-free. Also, the class of context-free languages
is closed under Kleene-star (Homework 5, problem 3c), so A∗ is context-
free. Finally, the class of context-free languages is closed under concatenation
(Homework 5, problem 3b), so A∗ is context-free, ensuring that A∗(B ∪C) is
context-free, so (d) is correct.

• We know that the class of context-free languages is not closed under com-
plementation (Homework 6, problem 2b), so there exists some context-free
language D whose complement D is not context-free. Also, let B = C = {ε},
which is finite, so B and C are regular (slide 1-95), making them also context-
free (Corollary 2.32). Also, B∗ = {ε}, so B∗ ∪ C = {ε}. Let A = D, so
A(B∗ ∪ C) = A = D is non-context free, making (a) incorrect.

• Let A be any regular language, so A is also context-free (Corollary 2.32). As
A is regular, A is also regular because the class of regular languages is closed
under complementation (Homework 2, problem 3), so A is also context-free
(Corollary 2.32). The class of CFLs is closed under Kleene-star (Homework
5, problem 3c), so C∗ is context-free. The class of CFLs is closed under union
(Homework 5, problem 3a), so B ∪ C∗ is context-free. The class of CFLs is
closed under concatenation (Homework 5, problem 3b), so in this case when
A is regular, we have that A(B∪C∗) is context-free, showing (b) is incorrect.

• For Σ = {a, b}, let A be the language of all strings over Σ that don’t begin
with a. Now A has regular expression ε ∪ b(a ∪ b)∗, so Kleene’s Theorem
(Theorem 1.54) implies that A is a regular language, making A also context-
free (Corollary 2.32). Also, A is the set of all strings over Σ that begin
with a; e.g., a ∈ A. Also, let B = {b} and C = {b}, each of which are
finite so also regular (slide 1-95) and context-free (Corollary 2.32). Also,
B∪C = {b} = C∪B. Then, we have that ab ∈ A(B∪C), but ab 6∈ (C∪B)A,
so A(B ∪ C) 6= (C ∪B)A, making (c) incorrect.

1.10. Answer: (f).
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For Σ = {0, 1}, let A be the language of all strings over Σ that have even length
or an odd number of 1’s. Note that A = A1 ∪ A2, where A1 is the language
of strings in Σ∗ of even length, and A2 is the language of strings in Σ∗ with an
odd number of 1’s. Thus, if we have a regular express r1 for A1 and a regular
expression r2 for A2, then a regular expression for A = A1 ∪ A2 is R = r1 ∪ r2.

• The regular expression R1 = ((0∪ 1)(0∪ 1))∗ ∪ (0∗10∗ ∪ 0∗1)(0∗10∗1)∗ cannot
generate the string w = 11100 ∈ A, so (i) is incorrect.

• We now show that R2 = (00 ∪ 01 ∪ 10 ∪ 11)∗ ∪ 0∗1(0 ∪ 10∗1)∗ in (ii) satisfies
A = L(R2). We can obtain regular expressions r1 and r2 for A1 and A2,
respectively, by converting DFAs for the languages into regular expressions.
A DFA M1 for A1 is

q1 q2

0, 1

0, 1

While we can use the algorithm in part of the proof of Kleene’s theorem
(Lemma 1.60) to convert the DFA M1 into a regular expression r1, the DFA
is simple enough to be able to analyze it directly to obtain r1. Specifically,
note that every string accepted by M1 has to be processed as follows:

– start in q1,
– loop from q1 back to q1 zero or more times.

Looping from q1 back to q1 corresponds to (0∪1)(0∪1) = (00∪01∪10∪11),
so looping zero or more times yields ((0 ∪ 1)(0 ∪ 1))∗ or (00 ∪ 01 ∪ 10 ∪ 11)∗.
Thus, we get r1 = ((0 ∪ 1)(0 ∪ 1))∗ and r′1 = (00 ∪ 01 ∪ 10 ∪ 11)∗ as regular
expressions for A1.
A DFA M2 recognizing A2 is

q1 q2

0

1

0

1

To obtain a regular expression corresponding M2, we apply the algorithm in
Kleene’s theorem (Lemma 1.60) to convert M2 into a regular expression r2
as follows. First, convert M2 into an equivalent GNFA:

s q1 q2 t
ε

0

1

0

1
ε

4



We will first eliminate state q1, so we define C = {s, q2} as the set of states
(except for q1) with edges directly into q1, and D = {q2} as the set of states
(except for q1) with edges directly from q1. Eliminating q1 by taking into
account all paths going directly from a state in C to q1, looping in q1 zero or
more times, and then directly going to a state in D results in

s q2 t
0∗1

0 ∪ 10∗1

ε

Next removing state q2 results in the regular expression r2 = 0∗1(0 ∪ 10∗1)∗

for A2. Thus, a regular expression for A = A1 ∪ A2 is R = r′1 ∪ r2 =
(00 ∪ 01 ∪ 10 ∪ 11)∗ ∪ 0∗1(0 ∪ 10∗1)∗, which is R2.

• For R3 = 0∗10∗(0∗10∗10∗)∗ ∪ ((0 ∪ 1)(0 ∪ 1))∗ in (iii), we can show that
A = L(R3) as follows. First, write A = A2 ∪ A1, with A1 and A2 as defined
above. We can again use regular expression r1 = ((0 ∪ 1)(0 ∪ 1))∗ for A1.
For A2, note that r3 = 0∗10∗ defines the language of strings in Σ∗ with
exactly a single 1. Also, r4 = (0∗10∗10∗)∗ defines the language of strings
in Σ∗ with an even number of 1s. Concatenating these two gives a regular
expression r′2 = r3r4 = 0∗10∗(0∗10∗10∗)∗ for the language of strings in Σ∗

with an odd number of 1s. Thus, a regular expression for A is r′2 ∪ r1 =
0∗10∗(0∗10∗10∗)∗ ∪ ((0 ∪ 1)(0 ∪ 1))∗, which is R3.

1.11. Answer: (c).
• The regular expression generates 01 6∈ A, so (a) is incorrect. In fact, the

language A is not regular, so A does not have a regular expression.
• The CFG can yield S ⇒ 1, but 1 6∈ A because the string has odd length, so

(b) is incorrect.
• The language A is even-length palindromes of 0’s and 1’s, and the CFG in

part (c) is correct, as seen in HW 5, problem 1(b).

1.12. Answer: (e).
The language A = { biaj | i ≥ 0, j ≥ 0, i = j } = { bnan | n ≥ 0 }.

• The regular expression b∗a∗ generates the string bba 6∈ A, so (a) is incorrect.
• The regular expression (ba)∗ generates the string baba 6∈ A, so (b) is incorrect.
• The given CFG G in option (c) has language L(G) = ∅ (i.e., no strings at all)

because derivations can never terminate: S ⇒ bSa ⇒ bbSaa ⇒ bbbSaaa ⇒
· · · , so (c) is incorrect.

• The language A has CFG with rules S → bSa | ε, so (d) is incorrect.

1.13. Answer: (d).
• By Theorem 2.20, a language is context-free if and only if some PDA rec-

ognizes it, so we can answer the question by considering the class of CFLs.
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The language { anbn | n ≥ 0 } is context-free (by a slight variation of slide
2-5) but not regular (by a slight variation of slide 1-105), so it cannot have a
regular expression, making (a) incorrect. This CFL is also infinite, so (b) is
incorrect.

• The language {ε} is finite, so it is regular (slide 1-95), and Corollary 2.32
ensures it is also context-free, so (c) is incorrect. Using the example from the
previous item then shows that a CFL can be finite and it can be infinite, so
(d) is correct.

1.14. Answer: (b).
• Suppose that L is the language with regular expression a∗b, which includes

a Kleene-star ∗ but ε 6∈ L, so (a) is incorrect.
• Because L has a regular expression, L must be regular by Kleene’s Theorem.

Corollary 2.32 ensures L is also context-free, so L must have a context-free
grammar in Chomsky normal form by Theorem 2.9, showing (b) is correct.

• If L has regular expression ε∗, which includes a Kleene-star ∗, then L = {ε},
which is a finite language, making (c) incorrect.

1.15. Answer: (c).
• The string [n]n ∈ A for each n ≥ 1, so A is infinite, making (a) incorrect.
• We can prove that A is nonregular using the pumping lemma, as follows.

Suppose that A is regular, and let p be the pumping length. Consider the
string s = [p]p ∈ A, and note that |s| = 2p ≥ p, so the conclusions of the
pumping lemma will hold. Thus, we can split s = xyz such that xyiz ∈ A
for all i ≥ 0, |y| > 0, and |xy| ≤ p. The last property implies that x and y
have only left brackets, so x = [j for some j ≥ 0, y = [k for some k ≥ 1 (using
the second property), and z = [m]p for some m ≥ 0, where j + k + m = p
because [p]p = s = xyz = [j[k[m]p = [j+k+m]p. The pumping lemma implies
that xyyz ∈ A, where xyyz = [j[k[k[m]p = [p+k]p because j + k + m = p.
However [p+k]p 6∈ A because k ≥ 1, so the pumping lemma does not hold,
proving that A is nonregular.

• HW 5, problem 1(i) gives the following CFG G for A: G = (V,Σ, R, S) with
set of variables V = {S}, where S is the start variable; set of terminals
Σ = { [, ] }; and rules

S → ε | SS | [S]

Thus, A is a CFG, so (c) is correct, and (d) is incorrect.

1.16. Answer: (e).
• We know that A = { anbn | n ≥ 0 } is nonregular (slide 1-105). Let B = A,

so A ⊆ B with B nonregular, so (a) is incorrect. If we instead let B = Σ∗

for Σ = {a, b}, then B is regular because it has a regular expression, making
(b) incorrect.

• The language A = { anbncn | n ≥ 0 } is non-context-free (slide 2-96), so A
is also nonregular by Corollary 2.32. Let B = A, so A ⊆ B with B non-
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context-free, so (c) is incorrect.
If we instead let B = Σ∗ for Σ = {a, b, c}, then A ⊆ B and B is regular
because it has a regular expression, so B is also context-free (Corollary 2.32),
making (d) incorrect.

1.17. Answer: (a)
• Suppose that w ∈ A with w 6= ε. Then wn ∈ A∗ for each n ≥ 0, where

wi 6= wj for each i 6= j because w 6= ε. Thus, A∗ is infinite, so (a) is correct.
• To show that (b), (c), and (d) are incorrect, consider A = {b}. Then A◦A =

{bb} 6= A, so (b) is incorrect. Also, A+ = { bn | n ≥ 1 } 6= { bn | n ≥ 0 } = A∗

because ε 6∈ A+ but ε ∈ A∗, so (c) is incorrect. Note that A∗ 6= A, so (d) is
incorrect.

1.18. Answer: (c).
• ε 6∈ ∅, so (a) is incorrect.
• ∅ is the empty set, and ε is the empty string, so they aren’t equal, making

(b) incorrect.
• ∅∗ = {ε} making (c) correct, and (d) incorrect.

1.19. Answer: (h).
• For Σ = {f, g, h}, the PDA

q1 q2 q3 q4 q5
ε, ε → $ ε, ε → ε

h, ε → x g, ε → x

ε, ε → ε

f, x → ε

ε, $ → ε

recognizes the language A = {higjfk | i, j, k ≥ 0 and i + j = k }, which is a
slight variation of HW 6, problem 1(e). Note that A differs from L1, L2, and
L3. For example, the string h1g2f 3 ∈ A but h1g2f 3 6∈ Lm for m = 1, 2, 3.
Thus, (h) is correct.

• The languages L1 and L2 are context-free, so they have PDAs (HW 6, problem
1(g) is a slight variation of L2) but just not the one that is given. On the
other hand, L3 is not context-free (slight variation of slide 2-96), so L3 does
not have a PDA (Theorem 2.20).

1.20. Answer: (a).
• If A is non-context-free, it must also be nonregular by Corollary 2.32, so

option (a) is correct.
• The language B = Σ∗ is both context-free and regular, so option (b) is

incorrect. Also, B = ∅, which is finite, so option (c) is incorrect.
• For the alphabet Σ = {a, b, c}, consider the language A = { anbncn | n ≥

0 } ⊆ Σ∗, and slide 2-96 proves A is non-context-free. Define B = Σ∗, which
is regular so it is also context-free by Corollary 2.32. But A ∪ B = B is
context-free, showing that option (d) is incorrect.
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2. We say that a DFA M for a language A is minimal if there does not exist another
DFA M ′ for A such that M ′ has strictly fewer states than M . Suppose that M =
(Q,Σ, δ, q0, F ) is a minimal DFA for A. Using M , we construct a DFA M for the
complement A as M = (Q,Σ, δ, q0, Q− F ). Prove that M is a minimal DFA for A.

Answer:
We prove this by contradiction. Suppose that M is not a minimal DFA for A. Then
there exists another DFA D for A such that D has strictly fewer states than M . Now
create another DFA D′ by swapping the accepting and non-accepting states of D.
Then D′ recognizes the complement of A. But the complement of A is just A, so
D′ recognizes A. Note that D′ has the same number of states as D, and M has the
same number of states as M . Thus, since we assumed that D has strictly fewer states
than M , then D′ has strictly fewer states than M . But since D′ recognizes A, this
contradicts our assumption that M is a minimal DFA for A. Therefore, M is a minimal
DFA for A.

3. For alphabet Σ = {a, b, c}, the language

A = { bcnbabcnb | n ≥ 0 }

is context-free. This is a slight variation of HW 5, problem 1(g) and HW 6, problem
1(h).

(a) A CFG G = (V,Σ, R, S) has a set of variables V = {S, T}, where S is the start
variable; set of terminals Σ = {a, b, c}; and rules

S → bTb

T → cTc | bab

There are infinitely many other correct CFGs for L.
(b) There are infinitely many correct PDAs for L. Here is one:

q1 q2 q3 q4 q5 q6
b, ε → b b, ε → ε

c, ε → c

a, ε → ε b, ε → ε

c, c → ε

b, b → ε

where an edge label “x, y → z” means read x, pop y, and push z.
In the above PDA, we can make either or both of the following modifications,
and still end up with a correct PDA for L.

• Push b instead of ε in the transition from q2 to q3, and correspondingly pop
b rather than ε in the transition from q4 to q5.

• Add a new start state q0 with an edge to q1 with label “ε, ε → $”, and also
add an edge from q6 (no longer an accept state) to a new accept state q7 with
label “ε, $ → ε”. In this case, then the transition from q1 to q2 could instead
push ε instead of b, and the transition from q5 to q6 could correspondingly
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pop ε rather than b. This is because popping $ in the transition from q6 to
q7 makes sure the stack is empty so that the c’s in the first group match the
c’s in the second group.

Suppose that we did not add the new states q0 and q7 described above but still
modified the above PDA to push ε instead of b in the transition from q1 to q2, and
correspondingly pop ε rather than b in the transition from q5 to q6. The resulting
PDA

q1 q2 q3 q4 q5 q6
b, ε → ε b, ε → ε

c, ε → c

a, ε → ε b, ε → ε

c, c → ε

b, ε → ε

is incorrect. The problem with this modification is that by popping ε in the
transition from q5 to q6, the PDA may move to q6 (and accept) with the stack
non-empty. Thus, there could be more c’s in the first group than in the second
group, leading to incorrectly some strings not in L. For example, the PDA with
this modification would then accept bccbabcb 6∈ L.
Another approach to design a PDA for L uses the algorithm from Lemma 2.21
to convert the CFG in part (a) into a PDA.

q0 q1

q2q4

q5

q6 q7

q8

q9

q3
ε, ε → $

ε, ε → S

ε, S → b

ε, ε → T ε, ε → b

ε, T → c

ε, ε → T

ε, ε → c

ε, T → b

ε, ε → a

ε, ε → b

a, a → ε
b, b → ε
c, c → ε ε, $ → ε

Note that
• The path q2 → q4 → q5 → q2 corresponds to the rule S → bTb, where the

symbols on the right side of the rule are pushed in reverse order.
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• The path q2 → q6 → q7 → q2 corresponds to the rule T → cTc, where the
symbols on the right side of the rule are pushed in reverse order.

• The path q2 → q8 → q9 → q2 corresponds to the rule T → bab, where the
symbols on the right side of the rule are pushed in reverse order.

4. Let A = {w ∈ {0, 1}∗ | n01(w) = n10(w) }, where ns(w) is the number of occurrences
of the substring s ∈ {0, 1}∗ in w. For example, the string w1 = 0001101100 has
n01(w1) = 2 and n10(w1) = 2, so w1 ∈ A. Also, the string w2 = 00011011001 has
n01(w2) = 3 and n10(w2) = 2, so w2 6∈ A.
The language A is regular. (HW 4, problem 3e considers essentially the same language.)
A regular expression for the language is 0(0∪11∗0)∗∪1(1∪00∗1)∗∪ε. Another regular
expression is 0(0 ∪ 1)∗0 ∪ 1(0 ∪ 1)∗1 ∪ 0 ∪ 1 ∪ ε. A DFA for the language is

q1 q2 q3

q4

q5

0

1

0

1

1

0

1

0

0
1

There are infinitely many other correct regular expressions and DFAs for A.
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