
CS 341-005 and HM1, Fall 2025, Face-to-Face Section
Solutions for Midterm 1

1. Multiple choice.

1.1. Answer: (e).
• For Σ = {a, b, c}, let B = Σ∗, which is regular. Now any language A having

alphabet Σ satisfies A ⊆ B. Taking A = { anbncn | n ≥ 0 }, which is non-
context-free (slide 2-96) so it is also non-regular (Corollary 2.32), which shows
that (a) and (c) are incorrect. On the other hand, let A = ∅, which is finite
so A is regular (slide 1-95) and also context-free (Corollary 2.32), showing
that (b) and (d) are incorrect.

1.2. Answer: (c).
• HW 6, problem 2a, shows that the class of CFLs is not closed under inter-

section, so (a) is incorrect.
• HW 6, problem 2b, shows that the class of CFLs is not closed under comple-

mentation, so (b) is incorrect.
• HW 5, problem 3b, shows that (c) is correct.
• The language { anbncn | n ≥ 0 } is not context-free by slide 2-96, so not all

languages are context-free, so (d) is incorrect.
• By Corollary 2.32, every regular language is also context-free, so (e) is incor-

rect.

1.3. Answer: (a).
• By Corollary 2.32, every regular language (even if it is infinite) is also context-

free, so (a) is correct, and (b) and (c) are incorrect.
• Theorem 1.25 implies that L1 ∪ L2 must be regular, so (d) is incorrect.

1.4. Answer: (e).
• For Σ = {a, b, c}, the language L1 = { anbncn | n ≥ 0 } is infinite, not regular,

and not context-free, so (a), (b), and (c) are incorrect.
• For the same language L1, note that a ∈ Σ∗ but a 6∈ L1, making (d) incorrect.

1.5. Answer: (e).
• The regular expression b∗(aa)∗ generates the string bbaa 6∈ A, so (a) is incor-

rect.
• The regular expression (baa)∗ generates the string baabaa 6∈ A, so (b) is

incorrect.
• The given CFG G in part (c) has language L(G) = ∅ (i.e., no strings at

all) because derivations can never terminate: S ⇒ bSaa ⇒ bbSaaaa ⇒
bbbSaaaaaa ⇒ · · · , so (c) is incorrect.

• The language A has CFG with rules S → bSaa | ε, so (d) is incorrect.

1.6. Answer: (c).
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• The regular expression 1∗ defines an infinite language, so (a) is incorrect.
• The regular expression 0 ∪ 1 defines a finite language, so (b) is incorrect.
• By Kleene’s Theorem (Theorem 1.54), A must be regular, so (c) is correct.

1.7. Answer: (b).

1.8. Answer: (b).
• HW 4, problem 5c, shows that (a) is incorrect, and that (b) is correct.
• Slightly modifying the proof on slide 1-105 shows that the language L1 =

{ anbn | n ≥ 1 } is non-regular. Adding ε to L1 leads to the language L2 =
{ anbn | n ≥ 0 }, which is context-free (with CFG having rules S → aSb | ε),
so (c) is incorrect.

• Slightly modifying the proof on slide 2-96 shows that the language L1 =
{ anbncn | n ≥ 1 } is non-context-free, so it is also non-regular by Corollary
2.32. Adding ε to L1 leads to the language L2 = { anbncn | n ≥ 0 }, which is
non-context-free by the proof on slide 2-96, so (d) is incorrect.

1.9. Answer: (b).
• The regular expression 01∗0 cannot generate the string 11 ∈ L, so R1 is

incorrect.
• The regular expression R2 is correct; see Example 7 on slide 1-74.
• The regular expression (0∪1)(0∪1)∗(0∪1) cannot generate the string 1 ∈ L,

so R3 is incorrect.

1.10. Answer: (c).
• The regular expression (0∗1∗)∗(1∗0∗)∗ generates 01 6∈ A, so (a) is incorrect. In

fact, the language A is not regular, so A does not have a regular expression.
• The CFG can yield S ⇒ 1, but 1 6∈ A because the string has odd length, so

(b) is incorrect.
• The language A is even-length palindromes of 0’s and 1’s, and the CFG in

part (c) is correct, as seen in HW 5, problem 1(b).

1.11. Answer: (c).
• For Σ = {0, 1}, consider the finite languages A = {ε} and B = {1}. Then

A = Σ∗ − {ε} = Σ+ is infinite, and A ◦ B = Σ+ ◦ {1}, which is the set of all
strings of length ≥ 2 that end in 1. Thus, A◦B is infinite, so (a) is incorrect.

• For Σ = {0, 1}, consider the finite languages A = {ε} and B = ∅, so A = Σ+

but A ◦B = ∅, which is finite, so (b) is incorrect.
• Because A and B are finite, both are regular (slide 1-95), and B is regular

because the class of regular languages is closed under complements (slide 1-
22). Also, the class of regular languages is closed under intersection, so A∩B
is regular, implying that A ∩B is also context-free (Corollary 2.32), making
(c) correct. Also, A is regular, so A∪B is regular because the class of regular
languages is closed under union (Theorem 1.25), making (d) incorrect.

1.12. Answer: (a).
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• |A| = 101, so it is finite, making it regular (slide 1-95). Thus, A has a regular
expression by Kleene’s Theorem (Theorem 1.54), making (a) correct.

• Because A is regular, it must have a regular expression, so (b) is incorrect.
Also, (d) is incorrect by Corollary 1.40. In addition, every regular language
is also context-free (Corollary 2.32), so A must have a PDA (Theorem 2.20),
making (c) incorrect.

1.13. Answer: (a).
• If A is non-context-free, it must also be nonregular by Corollary 2.32, so

option (a) is correct.
• The language B = Σ∗ is both context-free and regular, so option (b) is

incorrect. Also, B = ∅, which is finite, so option (c) is incorrect.
• For the alphabet Σ = {a, b, c}, consider the language A = { anbncn | n ≥

0 } ⊆ Σ∗, and slide 2-96 proves A is non-context-free. Define B = Σ∗, which
is regular so it is also context-free by Corollary 2.32. But A ∪ B = B is
context-free, showing that option (d) is incorrect.

1.14. Answer: (c).
• ε 6∈ ∅, so (a) is incorrect.
• ∅ is the empty set, and ε is the empty string, so they aren’t equal, making

(b) incorrect.
• ∅∗ = {ε} making (c) correct, and (d) incorrect.

1.15. Answer: (h).
• For Σ = {f, g, h}, the PDA

q1 q2 q3 q4 q5
ε, ε → $ ε, ε → ε

h, ε → x g, ε → x

ε, ε → ε

f, x → ε

ε, $ → ε

recognizes the language A = {higjfk | i, j, k ≥ 0 and i + j = k }, which is a
slight variation of HW 6, problem 1(e). Note that A differs from L1, L2, and
L3. For example, the string h1g2f 3 ∈ A but h1g2f 3 6∈ Lm for m = 1, 2, 3.
Thus, (h) is correct.

• The languages L1 and L2 are context-free, so they have PDAs (HW 6, problem
1(g) is a slight variation of L2) but just not the one that is given. On the
other hand, L3 is not context-free (slight variation of slide 2-96), so L3 does
not have a PDA (Theorem 2.20).

2. Short answers.

(a) Let Σ = {c, d} (note the alphabet!), and let A be the set of strings w ∈ Σ∗

such that |w| is even and w ends in c, where |w| denotes the length of w.
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Answer: There are infinitely many correct regular expressions for A, including
((c ∪ d)(c ∪ d))∗(c ∪ d)c, (ΣΣ)∗Σc, (cc ∪ cd ∪ dc ∪ dd)∗(cc ∪ dc).

(b) Suppose that language A1 has CFG G1 = (V1,Σ, R1, S1) and language A2 has
CFG G2 = (V2,Σ, R2, S2). Give a CFG G3 for A∗

2 in terms of G1 and G2. You
do not have to prove the correctness of your CFG G3, but do not give just an
example.

Answer: G3 = (V3,Σ, R3, S3), where
• V3 = V2 ∪ {S3},
• Σ is the same as in G2,
• rules R3 = R2 ∪ {S3 → S2S3, S3 → ε },
• S3 is the start variable, where S3 6∈ V2.

3. Let N be the following NFA with Σ = {a, b}, and let C = L(N).

1 2

3

a, ε

b

b

a
b

Give a DFA for C. You only need to draw the state diagram (graph); do not give the
5-tuple.

Answer: A DFA for C is below (there are other correct DFAs):

1, 2 2, 3

2 1, 2, 3∅

b

a
b

a

a

b

b

a

a, b

4. For Σ = {a, b, c}, let
L = { b2nc3kan | n ≥ 0, k ≥ 0 }.
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Answer: This is a slight variation of HW 6, problem 4(c).

(a) One CFG G = (V,Σ, R, S) for language L has a set of variables V = {S, T},
where S is the start variable; set of terminals Σ = {a, b, c}; and rules

S → bbSa | T
T → cccT | ε

There are infinitely many other correct CFGs for L.
(b) There are infinitely many correct PDAs for L. Here is one:

q1 q2

q3

q4

q5 q6

q7 q8
ε, ε → $

b, ε → ε

ε, ε → ε

b, ε → x

c, ε → ε

ε, ε → ε

c, ε → ε

c, ε → ε

a, x → ε

ε, $ → ε

where an edge label “x, y → z” means read x, pop y, and push z. The state q1
can also be an accept state.
We can also design a PDA for L by applying the algorithm from Lemma 2.21 to
convert the CFG in part (a) into a PDA.
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q0 q1

q2q4

q5

q6 q7

q9

q8

q3
ε, ε → $

ε, ε → S

ε, S → a

ε, ε → S

ε, ε → b

ε, ε → b

ε, T → T

ε, ε → c

ε, ε → c

ε, ε → c

a, a → ε
b, b → ε
c, c → ε
ε, S → T
ε, T → ε ε, $ → ε

Note that
• The path q2 → q4 → q5 → q6 → q2 corresponds to the rule S → bbSa, where

the symbols on the right side of the rule are pushed in reverse order.
• The path q2 → q9 → q8 → q7 → q2 corresponds to the rule T → cccT , where

the symbols on the right side of the rule are pushed in reverse order.

5. For Σ = {e, f} (note the alphabet!), let A = {www | w ∈ Σ∗ }.
Is A a regular or nonregular language? If A is regular, give a regular expression and
DFA (only state diagram) for A. If A is not regular, prove that it is a nonregular
language.

Answer: The language A is nonregular. Note that A is from problem 3a from HW
4 but with a different Σ. To prove this, suppose that A is a regular language. Let p
be the “pumping length” of the pumping lemma (Theorem 1.70). Consider the string
s = epfepfepf . Note that s ∈ A since s = www with w = epf , and |s| = 3p + 3 ≥ p,
so the pumping lemma will hold. Thus, we can split the string s into 3 parts s = xyz
satisfying the properties

(a) xyiz ∈ A for each i ≥ 0,
(b) |y| > 0,
(c) |xy| ≤ p.
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Since the first p symbols of s are all e’s, the third property implies that x and y consist
only of e’s. So z will be the rest of the first set of e’s, followed by fepfepf . The second
property states that |y| > 0, so y has at least one e. More precisely, we can then say
that

x = ej for some j ≥ 0,

y = ek for some k ≥ 1,

z = emfepfepf for some m ≥ 0.

Since epfepfepf = s = xyz = ejekemfepfepf = ej+k+mfepfepf , we must have that
j + k +m = p. The first property implies that xy2z ∈ A, but

xy2z = ejekekemfepfepf

= ep+kfepfepf

since j + k +m = p. Hence, xy2z 6∈ A because it is impossible to split xy2z into equal
thirds, so we get a contradiction. Therefore, A is a nonregular language.
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