CS 341, Fall 2010

Solutions for Midterm, eLearning Section

1. (a) True. The language \emptyset is finite, so slide $1-81$ shows that it is regular. Corollary 2.32 then implies that \emptyset is also context-free.
(b) False. For example, let A have regular expression $(0 \cup 1)^{*}$, so it is an infinite language. Since A has a regular expression, it is a regular language by Theorem 1.54 .
(c) True. By Corollary 1.40, A is regular since it has an NFA. Corollary 2.32 then implies that A is context-free, so it has a PDA by Theorem 2.20.
(d) False. The language $A=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is nonregular, which we can show by the pumping lemma for regular languages (choose the string $a^{p} b^{p} c^{p}$ to get a contradiction). But slide 2-105 shows that A is also non-context-free.
(e) False. Let $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ and B have regular expression $(0 \cup 1)^{*}$. Then B is regular since it has a regular expression (Theorem 1.54). Also, note that $A \subseteq B$, but A is nonregular, as shown on slide 1-90.
(f) False. Homework 6, problem 2b.
(g) True. Since A is finite, it is regular by slide 1-81. Thus, \bar{A} is regular by Homework 2, problem 3. Also, B is regular since it has a regular expression (Theorem 1.54), so $\bar{A} \cap B$ is regular by slide 1-28. Hence, Corollary 2.32 implies $\bar{A} \cap B$ is contextfree.
(h) False. The derivation $S \Rightarrow 0$ generates the string 0 , which is not in the language, so the CFG cannot be correct.
(i) True. Homework 5, problem 3b.
(j) True. Since A has a PDA, it is context-free by Theorem 2.20 , so the statement then follows from Theorem 2.9.
2. (a) $1^{*} 0\left(1 \cup 01^{*} 0\right)^{*}$
(b) - $S \rightarrow Y$ is not in Chomsky normal form since unit rules are not allowed.

- $S \rightarrow b a$ is improper since a rule cannot have more than one terminal on the RHS.
- $X \rightarrow X S$ is improper since starting variable S cannot be on RHS of rule.
- $X \rightarrow \varepsilon$ is improper since ε cannot be on the RHS of rule when the left side is not S.
- $Y \rightarrow X X Y$ is improper since the RHS cannot have more than two variables.
(c) slide 1-50.
(d) Homework 5, problem 3a.

3. Below is a DFA for the language L. There are other correct DFAs for L.

All edges not specified go to state q_{23}. For example, there is an edge from q_{1} to q_{23} labeled $\Sigma-\{\mathrm{h}, \mathrm{w}\}$.
4. Homework 6, problem 2a.
5. (a) $\varepsilon, b, b b, a a b, b a b, \ldots$
(b)

6. (a) $G=(V, \Sigma, R, S)$, with $V=\{S\}, \Sigma=\{a, b\}$, start variable S and rules $S \rightarrow$ $a S a|b S b| \varepsilon$.
(b) slide 2-59.
7. Suppose that A is a regular language. Let p be the pumping length, and consider the string $s=a^{p} b^{p+1} \in A$. Note that $|s|=2 p+1 \geq p$, so the pumping lemma implies we can write $s=x y z$ with $x y^{i} z \in A$ for all $i \geq 0,|y|>0$, and $|x y| \leq p$. Now, $|x y| \leq p$ implies that x and y have only a 's (together up to p in total) and z has the rest of the a 's at the beginning, followed by b^{p+1}. Hence, we can write $x=a^{j}$ for some $j \geq 0$, $y=a^{k}$ for some $k \geq 0$, and $z=a^{\ell} b^{p+1}$, where $j+k+\ell=p$ since $x y z=s=a^{p} b^{p+1}$. Also, $|y|>0$ implies $k>0$. Now consider the string xyyz $=a^{j} a^{k} a^{k} a^{\ell} b^{p+1}=a^{p+k} b^{p+1}$ since $j+k+\ell=p$. Note that xyyz $\notin A$ since $k \geq 1$ so the number of b 's in the string is not greater than the number of a 's. This contradicts (i), so A is not a regular language.

