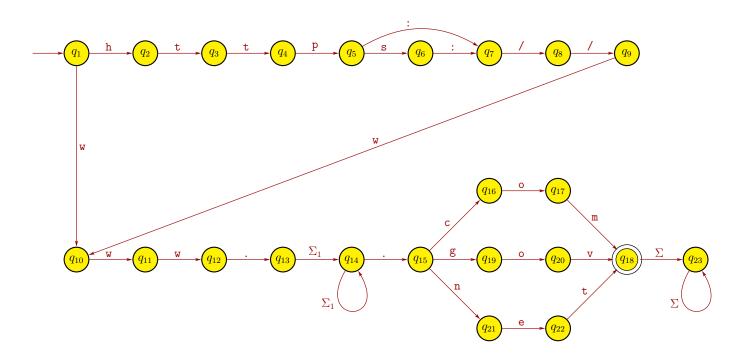
CS 341, Fall 2010 Solutions for Midterm, eLearning Section

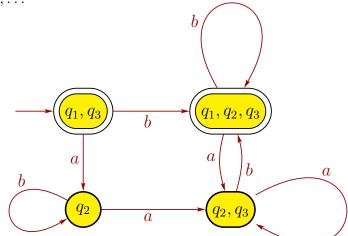
- 1. (a) True. The language \emptyset is finite, so slide 1-81 shows that it is regular. Corollary 2.32 then implies that \emptyset is also context-free.
 - (b) False. For example, let A have regular expression $(0 \cup 1)^*$, so it is an infinite language. Since A has a regular expression, it is a regular language by Theorem 1.54.
 - (c) True. By Corollary 1.40, A is regular since it has an NFA. Corollary 2.32 then implies that A is context-free, so it has a PDA by Theorem 2.20.
 - (d) False. The language $A = \{a^n b^n c^n \mid n \geq 0\}$ is nonregular, which we can show by the pumping lemma for regular languages (choose the string $a^p b^p c^p$ to get a contradiction). But slide 2-105 shows that A is also non-context-free.
 - (e) False. Let $A = \{0^n 1^n \mid n \ge 0\}$ and B have regular expression $(0 \cup 1)^*$. Then B is regular since it has a regular expression (Theorem 1.54). Also, note that $A \subseteq B$, but A is nonregular, as shown on slide 1-90.
 - (f) False. Homework 6, problem 2b.
 - (g) True. Since A is finite, it is regular by slide 1-81. Thus, \overline{A} is regular by Homework 2, problem 3. Also, B is regular since it has a regular expression (Theorem 1.54), so $\overline{A} \cap B$ is regular by slide 1-28. Hence, Corollary 2.32 implies $\overline{A} \cap B$ is context-free.
 - (h) False. The derivation $S \Rightarrow 0$ generates the string 0, which is not in the language, so the CFG cannot be correct.
 - (i) True. Homework 5, problem 3b.
 - (j) True. Since A has a PDA, it is context-free by Theorem 2.20, so the statement then follows from Theorem 2.9.
- 2. (a) $1*0(1 \cup 01*0)*$
 - (b) $S \to Y$ is not in Chomsky normal form since unit rules are not allowed.
 - $S \to ba$ is improper since a rule cannot have more than one terminal on the RHS.
 - $X \to XS$ is improper since starting variable S cannot be on RHS of rule.
 - $X \to \varepsilon$ is improper since ε cannot be on the RHS of rule when the left side is not S.
 - $Y \to XXY$ is improper since the RHS cannot have more than two variables.
 - (c) slide 1-50.
 - (d) Homework 5, problem 3a.
- 3. Below is a DFA for the language L. There are other correct DFAs for L.



All edges not specified go to state q_{23} . For example, there is an edge from q_1 to q_{23} labeled $\Sigma - \{h, w\}$.

- 4. Homework 6, problem 2a.
- 5. (a) ε , b, bb, aab, bab, . . .

(b)



- 6. (a) $G = (V, \Sigma, R, S)$, with $V = \{S\}$, $\Sigma = \{a, b\}$, start variable S and rules $S \to aSa \mid bSb \mid \varepsilon$.
 - (b) slide 2-59.

7. Suppose that A is a regular language. Let p be the pumping length, and consider the string $s = a^p b^{p+1} \in A$. Note that $|s| = 2p + 1 \ge p$, so the pumping lemma implies we can write s = xyz with $xy^iz \in A$ for all $i \ge 0$, |y| > 0, and $|xy| \le p$. Now, $|xy| \le p$ implies that x and y have only a's (together up to p in total) and z has the rest of the a's at the beginning, followed by b^{p+1} . Hence, we can write $x = a^j$ for some $j \ge 0$, $y = a^k$ for some $k \ge 0$, and $z = a^\ell b^{p+1}$, where $j + k + \ell = p$ since $xyz = s = a^p b^{p+1}$. Also, |y| > 0 implies k > 0. Now consider the string $xyyz = a^j a^k a^k a^\ell b^{p+1} = a^{p+k} b^{p+1}$ since $j + k + \ell = p$. Note that $xyyz \notin A$ since $k \ge 1$ so the number of b's in the string is not greater than the number of a's. This contradicts (i), so A is not a regular language.