Midterm Exam
CS 341-451: Foundations of Computer Science II - Fall 2010, eLearning section Prof. Marvin K. Nakayama

Print family (or last) name: $\qquad$

Print given (or first) name: $\qquad$

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 9 pages in total, numbered 1 to 9 . Make sure your exam has all the pages.
- Unless other arrangements have been made with the professor, the exam is to last 2.5 hours and is to be given on Saturday, October 16, 2010.
- This is a closed-book, closed-note exam. No calculators are allowed.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
2. DFA stands for deterministic finite automaton; NFA stands for nondeterministic finite automaton; CFG stands for context-free grammar; PDA stands for pushdown automaton.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step. If you are asked to prove a result X , in your proof of X , you may use any other result Y without proving Y. However, make it clear what the other result Y is that you are using; e.g., write something like, "By the result that $A^{* *}=A^{*}$, we know that . ..."

| Problem | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Points |  |  |  |  |  |  |  |  |

1. [20 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - $\emptyset$ is a context-free language.
(b) TRUE FALSE - If $A$ is a regular language, then $A$ is finite.
(c) TRUE FALSE - If $A$ has an NFA, then $A$ must have a PDA.
(d) TRUE FALSE - Every nonregular language is context-free.
(e) TRUE FALSE - If $A$ and $B$ are languages such that $A \subseteq B$ and $B$ is regular, then $A$ must be regular.
(f) TRUE FALSE - The class of context-free languages is closed under complements.
(g) TRUE FALSE - If $A$ is a finite language and $B$ has a regular expression, then $\bar{A} \cap B$ must be context-free.
(h) TRUE FALSE - The language $\left\{1^{n} 0^{n} \mid n \geq 0\right\}$ has context-free grammar $G=(V, \Sigma, R, S)$, with $V=\{S\}, \Sigma=\{0,1\}$, start variable $S$, and rules $S \rightarrow 1 S 0 \mid 0$.
(i) TRUE FALSE - The class of context-free languages is closed under concatenation.
(j) TRUE FALSE - If $A$ has a PDA, then $A$ must have a CFG in Chomsky normal form.
2. [20 points] Give short answers to each of the following parts. Each answer should be at most a few sentences. Be sure to define any notation that you use.
(a) Let $\Sigma=\{0,1\}$, and let $A$ be the set of strings over $\Sigma$ having an odd number of 0 's. Give a regular expression for $A$.
(b) Consider the following CFG $G=(V, \Sigma, R, S)$, with $V=\{S, X, Y\}, \Sigma=\{a, b\}$, start variable $S$, and rules $R$ as follows:

$$
\begin{aligned}
S & \rightarrow Y|X X| b a \mid \varepsilon \\
X & \rightarrow X S \mid \varepsilon \\
Y & \rightarrow a \mid X X Y
\end{aligned}
$$

Note that $G$ is not in Chomsky normal form. List all of the rules in $G$ that violate Chomsky normal form. Explain your answer.
(c) Suppose that language $A_{1}$ is recognized by NFA $N_{1}$ below, and language $A_{2}$ is recognized by NFA $N_{2}$ below. Note that the transitions are not drawn in $N_{1}$ and $N_{2}$. Draw a picture of an NFA for $A_{1} \circ A_{2}$.

(d) Suppose that $A_{1}$ is a language defined by a CFG $G_{1}=\left(V_{1}, \Sigma, R_{1}, S_{1}\right)$, and $A_{2}$ is a language defined by a CFG $G_{2}=\left(V_{2}, \Sigma, R_{2}, S_{2}\right)$, where the alphabet $\Sigma$ is the same for both languages and $V_{1} \cap V_{2}=\emptyset$. Let $A_{3}=A_{1} \cup A_{2}$. Give a CFG $G_{3}$ for $A_{3}$ in terms of $G_{1}$ and $G_{2}$. You do not have to prove the correctness of your CFG $G_{3}$, but do not give just an example.
3. [10 points] Define $\Sigma_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{z}\}$ be the set of lower-case Roman letters, and let $\Sigma_{2}=\{.,:, /\}$ be the set consisting of $\operatorname{dot}($.$) , colon (:) and slash (/). Let \Sigma=\Sigma_{1} \cup \Sigma_{2}$. Define the following sets:

- $S_{1}=\{\operatorname{http}: / /$, https:// $\}$
- $S_{2}=\{\mathrm{www}\}$
- $S_{3}=\Sigma_{1} \Sigma_{1}^{*}$, which consists of strings over $\Sigma_{1}$ of positive length
- $S_{4}=\{$ com, gov, net $\}$.

Then we define the following sets of strings over $\Sigma$ :

- $L_{1}=S_{1} S_{2} \cdot S_{3} \cdot S_{4}$
- $L_{2}=S_{2} \cdot S_{3} \cdot S_{4}$
- $L=L_{1} \cup L_{2}$

Give a DFA for the language $L$ with alphabet $\Sigma$. You only need to draw the graph; do not specify the DFA as a 5 -tuple.
4. [10 points] Give an example of context-free languages $A$ and $B$ such that $C=A \cap B$ is not context-free. Explain your answer. Be sure to give CFGs for $A$ and $B$. You do not have to prove that $C$ is non-context-free for your example, but $C$ must be a non-context-free language that we went over in the course.
5. [15 points] Let $N$ be the following NFA with $\Sigma=\{a, b\}$, and let $C=L(N)$.

(a) List the strings in $C$ in lexicographic order. If $C$ has more than 5 strings, list only the first 5 strings in $C$, followed by 3 dots.
(b) Give a DFA for $C$.

## Scratch-work area

6. [15 points] Let $\Sigma=\{a, b\}$, and consider the language $A=\left\{w \in \Sigma^{*}\left|w=w^{\mathcal{R}},|w|\right.\right.$ is even $\}$, where $w^{\mathcal{R}}$ denotes the reverse of $w$ and $|w|$ denotes the length of $w$.
(a) Give a CFG $G$ for $A$. Be sure to specify $G$ as a 4 -tuple $G=(V, \Sigma, R, S)$.
(b) Give a PDA for $A$. You only need to give the drawing.

## Scratch-work area

7. [10 points] Recall the pumping lemma for regular languages:

Theorem: If $L$ is a regular language, then there is a number $p$ (pumping length) where, if $s \in L$ with $|s| \geq p$, then there are strings $x, y, z$ such that $s=x y z$ and
(i) $x y^{i} z \in L$ for each $i \geq 0$,
(ii) $|y|>0$, and
(iii) $|x y| \leq p$.

Let $\Sigma=\{a, b\}$, and consider the language $A=\left\{w \in \Sigma^{*} \mid w\right.$ has more $b$ 's than $a$ 's $\}$. Prove that $A$ is not a regular language.

