Midterm Exam CS 341-451: Foundations of Computer Science II — Fall 2010, eLearning section Prof. Marvin K. Nakayama

Print family (or last) name:

Print given (or first) name: _____

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 9 pages in total, numbered 1 to 9. Make sure your exam has all the pages.
- Unless other arrangements have been made with the professor, the exam is to last 2.5 hours and is to be given on Saturday, October 16, 2010.
- This is a closed-book, closed-note exam. No calculators are allowed.
- For all problems, follow these instructions:
 - 1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
 - 2. DFA stands for deterministic finite automaton; NFA stands for nondeterministic finite automaton; CFG stands for context-free grammar; PDA stands for pushdown automaton.
 - 3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step. If you are asked to prove a result X, in your proof of X, you may use any other result Y without proving Y. However, make it clear what the other result Y is that you are using; e.g., write something like, "By the result that $A^{**} = A^*$, we know that"

Problem	1	2	3	4	5	6	7	Total
Points								

1. **[20 points]** For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE

(a)	TRUE	FALSE	 \emptyset is a context-free language.
(b)	TRUE	FALSE	 If A is a regular language, then A is finite.
(c)	TRUE	FALSE	 If A has an NFA, then A must have a PDA.
(d)	TRUE	FALSE	 Every nonregular language is context-free.
(e)	TRUE	FALSE	 If A and B are languages such that $A \subseteq B$ and B is regular, then A must be regular.
(f)	TRUE	FALSE	 The class of context-free languages is closed under complements.
(g)	TRUE	FALSE	 If A is a finite language and B has a regular expression, then $\overline{A} \cap B$ must be context-free.
(h)	TRUE	FALSE	 The language $\{1^n0^n \mid n \ge 0\}$ has context-free grammar $G = (V, \Sigma, R, S)$, with $V = \{S\}, \Sigma = \{0, 1\}$, start variable S , and rules $S \to 1S0 \mid 0$.
(i)	TRUE	FALSE	 The class of context-free languages is closed under con- catenation.
(j)	TRUE	FALSE	 If A has a PDA, then A must have a CFG in Chomsky normal form.

- 2. [20 points] Give short answers to each of the following parts. Each answer should be at most a few sentences. Be sure to define any notation that you use.
 - (a) Let $\Sigma = \{0, 1\}$, and let A be the set of strings over Σ having an odd number of 0's. Give a regular expression for A.

(b) Consider the following CFG $G = (V, \Sigma, R, S)$, with $V = \{S, X, Y\}$, $\Sigma = \{a, b\}$, start variable S, and rules R as follows:

$$S \rightarrow Y \mid XX \mid ba \mid \varepsilon$$
$$X \rightarrow XS \mid \varepsilon$$
$$Y \rightarrow a \mid XXY$$

Note that G is not in Chomsky normal form. List all of the rules in G that violate Chomsky normal form. Explain your answer.

(c) Suppose that language A_1 is recognized by NFA N_1 below, and language A_2 is recognized by NFA N_2 below. Note that the transitions are not drawn in N_1 and N_2 . Draw a picture of an NFA for $A_1 \circ A_2$.

(d) Suppose that A_1 is a language defined by a CFG $G_1 = (V_1, \Sigma, R_1, S_1)$, and A_2 is a language defined by a CFG $G_2 = (V_2, \Sigma, R_2, S_2)$, where the alphabet Σ is the same for both languages and $V_1 \cap V_2 = \emptyset$. Let $A_3 = A_1 \cup A_2$. Give a CFG G_3 for A_3 in terms of G_1 and G_2 . You do not have to prove the correctness of your CFG G_3 , but do not give just an example.

- 3. [10 points] Define $\Sigma_1 = \{a, b, c, ..., z\}$ be the set of lower-case Roman letters, and let $\Sigma_2 = \{., :, /\}$ be the set consisting of dot (.), colon (:) and slash (/). Let $\Sigma = \Sigma_1 \cup \Sigma_2$. Define the following sets:
 - $S_1 = \{ \texttt{http://, https://} \}$
 - $S_2 = \{www\}$
 - $S_3 = \Sigma_1 \Sigma_1^*$, which consists of strings over Σ_1 of positive length
 - $S_4 = \{ \operatorname{com}, \operatorname{gov}, \operatorname{net} \}.$

Then we define the following sets of strings over Σ :

- $L_1 = S_1 S_2 . S_3 . S_4$
- $L_2 = S_2.S_3.S_4$
- $L = L_1 \cup L_2$

Give a DFA for the language L with alphabet Σ . You only need to draw the graph; do not specify the DFA as a 5-tuple.

4. **[10 points]** Give an example of context-free languages A and B such that $C = A \cap B$ is not context-free. Explain your answer. Be sure to give CFGs for A and B. You do not have to prove that C is non-context-free for your example, but C must be a non-context-free language that we went over in the course.

5. [15 points] Let N be the following NFA with $\Sigma = \{a, b\}$, and let C = L(N).

- (a) List the strings in C in lexicographic order. If C has more than 5 strings, list only the first 5 strings in C, followed by 3 dots.
- (b) Give a DFA for C.

Scratch-work area

- 6. **[15 points]** Let $\Sigma = \{a, b\}$, and consider the language $A = \{w \in \Sigma^* \mid w = w^{\mathcal{R}}, |w| \text{ is even }\}$, where $w^{\mathcal{R}}$ denotes the reverse of w and |w| denotes the length of w.
 - (a) Give a CFG G for A. Be sure to specify G as a 4-tuple $G = (V, \Sigma, R, S)$.

(b) Give a PDA for A. You only need to give the drawing.

Scratch-work area

7. [10 points] Recall the pumping lemma for regular languages:

Theorem: If L is a regular language, then there is a number p (pumping length) where, if $s \in L$ with $|s| \ge p$, then there are strings x, y, z such that s = xyz and

- (i) $xy^i z \in L$ for each $i \ge 0$,
- (ii) |y| > 0, and
- (iii) $|xy| \leq p$.

Let $\Sigma = \{a, b\}$, and consider the language $A = \{w \in \Sigma^* \mid w \text{ has more } b$'s than a's $\}$. Prove that A is not a regular language.