CS 341, Spring 2010 Solutions for Midterm 2

- 1. (a) True. This is just the definition of co-Turing-recognizable.
 - (b) False, by Theorem 3.16.
 - (c) False. A TM M may loop on input w.
 - (d) False. $A_{\rm TM}$ is not Turing-recognizable by Corollary 4.23.
 - (e) True, since the definition of Turing-decidable is more restrictive than the definition of Turing-recognizable.
 - (f) True, by Theorem 3.13.
 - (g) True, by slide 4-25.
 - (h) False, e.g., if $A = \{00, 11\}$ and $B = \{00, 11, 111\}$, then $A \cap \overline{B} = \emptyset$ but $A \neq B$. For A and B to be equal, we instead need $(\overline{A} \cap B) \cup (A \cap \overline{B}) = \emptyset$.
 - (i) False, since the set $\mathcal{N} = \{1, 2, 3, \ldots\}$ is countable.
 - (j) True, since every regular language is context-free by Corollary 2.32, and every context-free language is decidable by Theorem 4.9.
- 2. (a) Yes, because each element in A maps to a different element in B.
 - (b) No, because there is no element in A that maps to $4 \in B$.
 - (c) No, because f is not onto.
 - (d) An algorithm is a Turing machine that always halts.
 - (e) A language L_1 that is Turing-recognizable has a Turing machine M_1 such that M_1 accepts each $w \in L_1$, and M_1 loops or rejects every $w \notin L_1$. A language L_2 that is Turing-decidable has a Turing machine M_2 such that M_2 accepts each $w \in L_2$, and M_2 rejects every $w \notin L_2$; i.e., M_2 never loops.
- 3. (a) $q_1 110 \# 01 \quad xq_3 10 \# 01 \quad x 1q_3 0 \# 01 \quad x 10q_3 \# 01 \quad x 10 \# q_5 01 \quad x 10 \# 0q_{\text{reject}} 1$ (b) $q_1 0 \# 0 \quad xq_2 \# 0 \quad x \# q_4 0 \quad xq_6 \# x \quad q_7 x \# x \quad xq_1 \# x \quad x \# q_8 x \quad x \# xq_8 x \quad x$
- 4. Slides 4-39 and 4-40.
- 5. Define the language as

 $C = \{ \langle D, R \rangle \mid D \text{ is a DFA and } R \text{ is a regular expression with } L(D) = L(R) \}.$

Recall that the proof of Theorem 4.5 defines a Turing machine F that decides the language $EQ_{\text{DFA}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$. Then the following Turing machine T decides C:

- T = "On input $\langle D, R \rangle$, where D is a DFA and R is a regular expression:
 - 1. Convert R into an equivalent DFA D'using the algorithm in the proof of Kleene's Theorem.
 - **2.** Run TM F from Theorem 4.5 on input $\langle D, D' \rangle$.
 - **3.** If F accepts, accept. If F rejects, reject."

6. Homework 8, problem 4.