CS 341, Spring 2010

Solutions for Midterm 2

1. (a) True. This is just the definition of co-Turing-recognizable.
(b) False, by Theorem 3.16.
(c) False. A TM M may loop on input w.
(d) False. $\overline{A_{\mathrm{TM}}}$ is not Turing-recognizable by Corollary 4.23.
(e) True, since the definition of Turing-decidable is more restrictive than the definition of Turing-recognizable.
(f) True, by Theorem 3.13.
(g) True, by slide 4-25.
(h) False, e.g., if $A=\{00,11\}$ and $B=\{00,11,111\}$, then $A \cap \bar{B}=\emptyset$ but $A \neq B$. For A and B to be equal, we instead need $(\bar{A} \cap B) \cup(A \cap \bar{B})=\emptyset$.
(i) False, since the set $\mathcal{N}=\{1,2,3, \ldots\}$ is countable.
(j) True, since every regular language is context-free by Corollary 2.32, and every context-free language is decidable by Theorem 4.9.
2. (a) Yes, because each element in A maps to a different element in B.
(b) No, because there is no element in A that maps to $4 \in B$.
(c) No, because f is not onto.
(d) An algorithm is a Turing machine that always halts.
(e) A language L_{1} that is Turing-recognizable has a Turing machine M_{1} such that M_{1} accepts each $w \in L_{1}$, and M_{1} loops or rejects every $w \notin L_{1}$. A language L_{2} that is Turing-decidable has a Turing machine M_{2} such that M_{2} accepts each $w \in L_{2}$, and M_{2} rejects every $w \notin L_{2}$; i.e., M_{2} never loops.
3. (a) $q_{1} 110 \# 01 \quad x q_{3} 10 \# 01 \quad x 1 q_{3} 0 \# 01 \quad x 10 q_{3} \# 01 \quad x 10 \# q_{5} 01 \quad x 10 \# 0 q_{\text {reject }} 1$
(b) $\begin{array}{rlllllll}q_{1} 0 \# 0 & x q_{2} \# 0 & x \# q_{4} 0 & x q_{6} \# x & q_{7} x \# x & x q_{1} \# x & x \# q_{8} x & x \# x q_{8} \\ x \# x & \sqcup q_{\text {accept }}\end{array}$
4. Slides 4-39 and 4-40.
5. Define the language as

$$
C=\{\langle D, R\rangle \mid D \text { is a DFA and } R \text { is a regular expression with } L(D)=L(R)\} .
$$

Recall that the proof of Theorem 4.5 defines a Turing machine F that decides the language $E Q_{\mathrm{DFA}}=\{\langle A, B\rangle \mid A$ and B are DFAs and $L(A)=L(B)\}$. Then the following Turing machine T decides C :
$T=$ "On input $\langle D, R\rangle$, where D is a DFA and R is a regular expression:

1. Convert R into an equivalent DFA D^{\prime} using the algorithm in the proof of Kleene's Theorem.
2. Run TM F from Theorem 4.5 on input $\left\langle D, D^{\prime}\right\rangle$.
3. If F accepts, accept. If F rejects, reject."
4. Homework 8, problem 4.
