CS 341, Fall 2011 Solutions for Midterm, eLearning Section

1. (a) True. Kleene's Theorem ensures A^{*} is regular, and we know \bar{B} is regular by HW 2, problem 3. Thus, $A^{*} \cap \bar{B}$ is regular by HW 2 , problem 5 .
(b) True. Corollary 2.32 implies A is context-free. Thus, A has a PDA by Theorem 2.20 .
(c) False. For example, $A=\emptyset$ is a subset of $B=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$, but A is regular and B is non-regular.
(d) False. Theorem 1.39.
(e) True. By Theorem 2.9. The fact that A is non-regular is irrelevant.
(f) True. Suppose A is non-context-free but regular. But then Corollary 2.32 implies A is context-free, which is a contradiction.
(g) False. The language a^{*} is regular but infinite.
(h) False. The TM M can also loop on w.
(i) False. $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is non-regular, but not context-free.
(j) False. HW 6, problem 2(a).
2. (a) $b^{*} a b^{*} a b^{*} \cup a^{*} b a^{*} b(a \cup b)^{*}$
(b) - $S \rightarrow Y S$ is not in Chomsky normal form since starting variable cannot be on right side of rule.

- $X \rightarrow \varepsilon$ is improper since ε cannot be on right side of rule unless S is on left side.
- $Y \rightarrow a X$ is improper since a rule cannot have a mix of terminals and variables on the right.
- $Y \rightarrow X Y X$ is improper since a rule cannot have more than two variables on the right side.
(c) slide 1-50.
(d) Homework 5, problem 3a.

3. Below is a DFA for the language L. There are other correct DFAs for L.

4. (a) $q_{1} 110 \# 01 \quad x q_{3} 10 \# 01 \quad x 1 q_{3} 0 \# 01 \quad x 10 q_{3} \# 01 \quad x 10 \# q_{5} 01 \quad x 10 \# 0 q_{\text {reject }} 1$
(b) $\quad q_{1} 0 \# 0 \quad x q_{2} \# 0 \quad x \# q_{4} 0 \quad x q_{6} \# x \quad q_{7} x \# x \quad x q_{1} \# x \quad x \# q_{8} x \quad x \# x q_{8}$ $x \# x \sqcup q_{\text {accept }}$
5. (a) CFG $G=(V, \Sigma, R, S)$, with $V=\{S, X, Y\}$ and start variable $S, \Sigma=\{a, b, c\}$, and rules R :

$$
\begin{aligned}
& S \rightarrow X Y \\
& X \rightarrow a X b \mid \varepsilon \\
& Y \rightarrow c Y \mid \varepsilon
\end{aligned}
$$

(b) PDA

6. HW 6, problem 2b.
7. Suppose that A is a regular language. Let p be the pumping length, and consider the string $s=a^{p} b^{p} \in A$. Note that $|s|=2 p \geq p$, so the pumping lemma implies we can write $s=x y z$ with $x y^{i} z \in A$ for all $i \geq 0,|y|>0$, and $|x y| \leq p$. Now, $|x y| \leq p$ implies that x and y have only a 's (together up to p in total) and z has the rest of the a 's at the beginning, followed by b^{p}. Hence, we can write $x=a^{j}$ for some $j \geq 0, y=a^{k}$ for some $k \geq 0$, and $z=a^{\ell} b^{p}$, where $j+k+\ell=p$ since $x y z=s=a^{p} b^{p}$. Also, $|y|>0$ implies $k>0$. Now consider the string $x y y z=a^{j} a^{k} a^{k} a^{\ell} b^{p}=a^{p+k} b^{p}$ since $j+k+\ell=p$. Note that xyyz $\notin A$ since $k>0$ so the number of a 's and b 's are not equatl. This contradicts (i), so A is not a regular language.

