CS 341, Fall 2011
 Solutions for Midterm 1

1. (a) False. The language a^{*} is regular but infinite.
(b) True. Since A is finite (it has only 54 strings),
(c) False. $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is non-regular, but not context-free.
(d) False. HW 6, problem 2(b).
(e) True. By HW 2, problem 3, we know \bar{A} is regular. Kleene's Theorem ensures B^{*} is regular, so $\bar{A} \cup B^{*}$ is regular by Theorem 1.25 .
(f) True. Corollary 2.32 implies A is context-free. Thus, A has a PDA by Theorem 2.20 .
(g) False. For example, $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is a subset of $B=L\left((0 \cup 1)^{*}\right)$, but A is non-regular and B is regular.
(h) False. Theorem 1.39.
(i) True. By Theorem 2.9. The fact that A is non-regular is irrelevant.
(j) True. Suppose A is non-context-free but regular. But then Corollary 2.32 implies A is context-free, which is a contradiction.
2. (a) $\left(a \cup b a^{*} b\right)(a \cup b)^{*}$
(b) $(a \cup b)^{*}(a b \cup b a) \cup a \cup b \cup \varepsilon$
(c) see slide 1-50.
(d) CFG $G=(V, \Sigma, R, S)$ is Chomsky normal form means that each rule in R has one of 3 forms:

$$
\begin{aligned}
A & \rightarrow B C \\
A & \rightarrow x \\
S & \rightarrow \varepsilon
\end{aligned}
$$

where $A \in V ; B, C \in V-\{S\} ; x \in \Sigma$, and S is the start variable. Thus, the violating rules are

- $S \rightarrow a X$, since there cannot be a mix of terminals and variables on the RHS
- $X \rightarrow Y$, since unit rules are not allowed
- $Y \rightarrow \varepsilon$, since cannot have ε on RHS of rule when LHS is not S
- $Y \rightarrow S X$, since S cannot be on RHS.

3. (a) $\varepsilon, a, a a, a a a, b a a, \ldots$
(b) A DFA for C is below:

4. (a) $G=(V, \Sigma, R, S)$ with set of variables $V=\{S, U, W, X, Y\}$, where S is the start variable; set of terminals $\Sigma=\{a, b, c\}$; and rules

$$
\begin{aligned}
S & \rightarrow U W \mid X \\
U & \rightarrow c U a \mid \varepsilon \\
W & \rightarrow b W \mid \varepsilon \\
X & \rightarrow c X b \mid Y \\
Y & \rightarrow a Y \mid \varepsilon
\end{aligned}
$$

(b) PDA

5. Language A is nonregular. We prove this by contradiction. Suppose that A is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string $s=a^{p} b a^{p} b a^{p} b$. Note that $s \in A$, and $|s|=3 p+3>p$, so the Pumping Lemma will hold. Thus, there exists strings x, y, and z such that $s=x y z$ and
(a) $x y^{i} z \in A$ for each $i \geq 0$,
(b) $|y|>0$,
(c) $|x y| \leq p$.

Since the first p symbols of s are all a 's, the third property implies that x and y consist only of a 's. So z will be the rest of the a 's, followed by $b a^{p} b a^{p} b$. The second property states that $|y|>0$, so y has at least one a. More precisely, we can then say that

$$
\begin{aligned}
& x=a^{j} \text { for some } j \geq 0 \\
& y=a^{k} \text { for some } k \geq 1 \\
& z=a^{m} b a^{p} b a^{p} b \text { for some } m \geq 0 .
\end{aligned}
$$

Since $a^{p} b a^{p} b a^{p} b=s=x y z=a^{j} a^{k} a^{m} b a^{p} b a^{p} b=a^{j+k+m} b a^{p} b a^{p} b$, we must have that

$$
j+k+m=p .
$$

The first property implies that $x y^{2} z \in A$, and

$$
\begin{aligned}
x y^{2} z & =a^{j} a^{k} a^{k} a^{m} b a^{p} b a^{p} b \\
& =a^{p+k} b a^{p} b a^{p} b
\end{aligned}
$$

since $j+k+m=p$. When $x y^{2} z$ is split into equal thirds (assuming that this is even possible), the first third contains only a 's since $k \geq 1$, but at least one of the other thirds contains a b. Hence, $x y^{2} z \notin A$, so we get a contradiction. Therefore, A is a nonregular language.

