Midterm Exam 1
CS 341: Foundations of Computer Science II - Fall 2011, day section
Prof. Marvin K. Nakayama

Print family (or last) name: \qquad

Print given (or first) name: \qquad

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 7 pages in total, numbered 1 to 7 . Make sure your exam has all the pages.
- Note the number written on the upper right-hand corner of the first page. On the sign-up sheet being passed around, sign your name next to this number.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratchwork area or the backs of the sheets to work out your answers before filling in the answer space.
2. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	5	Total
Points						

1. [20 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - If A is a regular language, then A is finite.
(b) TRUE FALSE - The language $A=\left\{0^{n} 1^{n} \mid 0 \leq n \leq 53\right\}$ is regular.
(c) TRUE FALSE - Every nonregular language is context-free.
(d) TRUE FALSE - The class of context-free languages is closed under complementation.
(e) TRUE FALSE - If A and B are regular languages, then so is $\bar{A} \cup B^{*}$.
(f) TRUE FALSE - If A has a regular expression, then A has a PDA.
(g) TRUE FALSE - Every subset of a regular language is also regular.
(h) TRUE FALSE - There is a language recognized by an NFA but has no DFA.
(i) TRUE FALSE - If A is a context-free language that is also non-regular, then A has a CFG in Chomsky normal form.
(j) TRUE FALSE - Every non-context-free language is also non-regular.
2. [20 points] Give short answers to each of the following parts. Be sure to define any notation that you use.
(a) Give a regular expression for the language recognized by the DFA below.

Answer:

(b) For the alphabet $\Sigma=\{a, b\}$, give a regular expression for the language

$$
\left\{w \in \Sigma^{*} \mid w \text { does not end in a double letter }\right\}
$$

(A string contains a double letter if it contains $a a$ or $b b$ as a substring.)

Answer:
(c) Suppose that language A_{1} is recognized by NFA N_{1} below, and language A_{2} is recognized by NFA N_{2} below. Note that the transitions are not drawn in N_{1} and N_{2}. Draw a picture of an NFA for $A_{1} \circ A_{2}$.

(d) Consider the following CFG $G=(V, \Sigma, R, S)$, with $V=\{S, X, Y\}, \Sigma=\{a, b\}$, start variable S, and rules R as follows:

$$
\begin{aligned}
S & \rightarrow X Y|a X| \varepsilon \\
X & \rightarrow Y \mid b \\
Y & \rightarrow \varepsilon \mid S X
\end{aligned}
$$

Note that G is not in Chomsky normal form. List all of the rules in G that violate Chomsky normal form. Explain your answer.
3. [20 points] Let N be the following NFA with $\Sigma=\{a, b\}$, and let $C=L(N)$.

(a) List the strings in C in lexicographic order. If C has more than 5 strings, list only the first 5 strings in C, followed by 3 dots.
(b) Give a DFA for C.

Scratch-work area

4. [25 points] Consider the alphabet $\Sigma=\{a, b, c\}$ and the language

$$
L=\left\{c^{i} a^{j} b^{k} \mid i, j, k \geq 0, \text { and } i=j \text { or } i=k\right\} .
$$

(a) Give a context-free grammar G for L. Be sure to specify G as a 4-tuple $G=(V, \Sigma, R, S)$.
(b) Give a PDA for L. You only need to draw the graph.

Scratch-work area

5. [15 points] Recall the pumping lemma for regular languages:

Theorem: If L is a regular language, then there exists a pumping length p where, if $s \in L$ with $|s| \geq p$, then there exists strings x, y, z such that $s=x y z$ and (i) $x y^{i} z \in L$ for each $i \geq 0$, (ii) $|y| \geq 1$, and (iii) $|x y| \leq p$.
Let $A=\left\{w w w \mid w \in\{a, b\}^{*}\right\}$. Is A a regular or nonregular language? If A is regular, give a regular expression for A. If A is not regular, prove that it is a nonregular language.

Circle one: Regular Language Nonregular Language

