CS 341, Fall 2011

Solutions for Midterm 2

1. (a) False, e.g., $\overline{A_{T M}}$ is not Turing-recognizable.
(b) False, e.g., if $A=\{00,11,111\}$ and $B=\{00,11\}$, then $\bar{A} \cap B=\emptyset$ but $A \neq B$. For A and B to be equal, we instead need $(\bar{A} \cap B) \cup(A \cap \bar{B})=\emptyset$.
(c) False. TM M may loop on input w.
(d) True, since every regular language is context-free, every context-free language is decidable, and every decidable language is Turing-recognizable.
(e) False, by Theorem 4.11.
(f) False, by Corollary 4.23.
(g) False. Can decide this by the following TM:
$M=$ "On input $\langle N, R\rangle$, where N is an NFA and R is a regular expression:
2. Check if $\langle N, R\rangle$ is a proper encoding of NFA N and regular expression R;
if not, reject.
3. Convert N into equivalent DFA D_{1} using algorithm in Theorem 1.39.
4. Convert R into equivalent DFA D_{2} using algorithms in Lemma 1.55 and Theorem 1.39.
5. Run TM S for $E Q_{\text {DFA }}$ on input $\left\langle D_{1}, D_{2}\right\rangle$. If S accepts, then accept; else, reject."
(h) True, by Theorem 4.5.
(i) False, by Theorem 3.13.
(j) False, by Corollary 3.15.
6. (a) No, because $f(x)=f(y)=1$.
(b) No, because nothing in A maps to $3 \in B$.
(c) No, because f is not one-to-one nor onto.
(d) A language L_{1} that is Turing-recognizable has a Turing machine M_{1} that may loop forever on a string $w \notin L_{1}$. A language L_{2} that is Turing-decidable has a Turing machine M_{2} that always halts.
(e) An algorithm is a Turing machine that always halts.
7. (a) $q_{1} 010 \# 1 \quad x q_{2} 10 \# 1 \quad x 1 q_{2} 0 \# 1 \quad x 10 q_{2} \# 1 \quad x 10 \# q_{4} 1 \quad x 10 \# 1 q_{\text {reject }}$
(b) $\begin{array}{cccccccc}q_{1} 1 \# 1 & x q_{3} \# 1 & x \# q_{5} 1 & x q_{6} \# x & q_{7} x \# x & x q_{1} \# x & x \# q_{8} x & x \# x q_{8} \\ x \# x & \sqcup q_{\text {accept }}\end{array}$
8. Slides 4-39 and 4-40.
9. Define the language as

$$
E_{\mathrm{NFA}}=\{\langle N\rangle \mid N \text { is an NFA with } L(N)=\emptyset\} .
$$

Recall that the proof of Theorem 4.4 defines a Turing machine F that decides the language $E_{\mathrm{DFA}}=\{\langle D\rangle \mid D$ is a DFA with $L(D)=\emptyset\}$. Then the following Turing machine T decides E_{NFA} :
$T=$ "On input $\langle N\rangle$, where N is an NFA:

1. Convert N into an equivalent DFA D using the algorithm in Theorem 1.39.
2. Run TM F from Theorem 4.4 on input $\langle D\rangle$.
3. If F accepts, accept. If F rejects, reject."
4. This is Theorem 5.1, whose proof is given on slide 5-8.
