CS 341, Fall 2012
 Solutions for Midterm, eLearning Section

1. (a) False. The language a^{*} is regular but infinite.
(b) True. Since A is finite, it is regular by slide 1-81 of the notes. Corollary 2.32 then ensures that A is regular.
(c) False. For example, let $A=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ and $B=(a \cup b)^{*}$. Then $A \subseteq B, B$ is regular, but A is nonregular.
(d) False. $a^{*} b^{*}$ generates the string $a b b \notin\left\{a^{n} b^{n} \mid n \geq 0\right\}$.
(e) True. By Theorem 2.9. The fact that A is non-regular is irrelevant.
(f) True. Since A has an NFA, it is regular by Corollary 1.40. Since B is finite, it is regular by slide $1-81$, and we know \bar{B} is regular by HW 2 , problem 3. Thus, $A \cap \bar{B}$ is regular by HW 2 , problem 5 .
(g) True. By Theorem 2.20.
(h) False. For example, let $A=\{a b c\}$ and $B=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$, so $A \subseteq B$. A is finite so it is regular, so it is also context-free by Corollary 2.32 . But B is not context-free by slide 2-106.
(i) False. By Homework 6, problem 2(b).
(j) False. $A=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is nonregular and not context-free.
2. (a) $\varepsilon \cup a \cup b \cup(a \cup b)^{*}(a b \cup b a)$
(b) - $S \rightarrow X$ is improper since it is a unit rule.

- $S \rightarrow b a$ is improper since a rule can't have more than one terminal on the right side.
- $X \rightarrow Y S$ is improper since the start variable S can't be on the right side.
- $X \rightarrow \varepsilon$ is improper if ε is on the right side, S must be on the left side.
- $Y \rightarrow a X$ is improper since the right side has a mix of terminals and variables.
(c) slide 1-53.
(d) Homework 5, problem 3a.

3. Here's a DFA for C.

4. (a) CFG $G=(V, \Sigma, R, S)$, with $V=\{S\}$ and start variable $S, \Sigma=\{a, b\}$, and rules R :

$$
S \rightarrow a S a|b S b| \varepsilon
$$

(b) PDA

5. HW 2, problem 4.
6. HW 6, problem 2b.
7. Suppose that A is a regular language. Let p be the pumping length, and consider the string $s=a^{p} b b a^{p} \in A$. Note that $|s|=2 p+2 \geq p$, so the pumping lemma implies we can write $s=x y z$ with $x y^{i} z \in A$ for all $i \geq 0,|y|>0$, and $|x y| \leq p$. Now, $|x y| \leq p$ implies that x and y have only a 's (together up to p in total) and z has the rest of the a 's at the beginning, followed by $b b a^{p}$. Hence, we can write $x=a^{j}$ for some $j \geq 0$, $y=a^{k}$ for some $k \geq 0$, and $z=a^{\ell} b b a^{p}$, where $j+k+\ell=p$ since $x y z=s=a^{p} b b a^{p}$. Also, $|y|>0$ implies $k>0$. Now consider the string $x y y z=a^{j} a^{k} a^{k} a^{\ell} b b a^{p}=a^{p+k} b b a^{p}$ since $j+k+\ell=p$. Since $k>0$, the numbers of a 's at the beginning and end of
$x y y z$ are not the same, so xyyz is not the same forwards and backwards, which means $x y y z \notin A$. This contradicts (i), so A is not a regular language.

