CS 341, Fall 2012, Face-to-Face Section Solutions for Midterm 1

- 1. (a) True. By Corollary 1.40 and Theorem 1.54.
 - (b) True. Homework 4, problem 5d.
 - (c) True, by Lemma 2.27 and Theorem 2.9.
 - (d) False. Let $A = \{0,1\}^*$ and $B = \{ww \mid w \in \{0,1\}^*\}$. Language A has CFG with rules $S \to 0S \mid 1S \mid \varepsilon$, so it is context-free. Slide 2-108 shows that B is not context-free.
 - (e) True. Finite languages are regular by the theorem on slide 1-81.
 - (f) False. The language $A = \{0^n 1^n \mid n \ge 0\}$ is context-free since it has CFG with rules $S \to 0S1 \mid \varepsilon$, but it is non-regular, as shown on slide 1-90.
 - (g) False. The language a^* is regular but infinite.
 - (h) False. Corollary 1.40 shows that a language is regular if and only if it has an NFA.
 - (i) False. Homework 6, problem 2(a).
 - (j) True. If A has a regular expression, then it must be regular by Theorem 1.54. Homework 2, problem 3, shows that \overline{A} must be regular. Corollary 2.32 implies that \overline{A} must be context-free.
- 2. (a) $1^*0(1 \cup 01^*0)^*$
 - (b) $(a \cup b(a \cup b)^*a)b^*$
 - (c) slide 1-50.
 - (d) Homework 5, problem 3a.
- 3. A DFA for C is below:

4. (a) $G = (V, \Sigma, R, S)$ with set of variables $V = \{S\}$, where S is the start variable; set of terminals $\Sigma = \{a, b\}$; and rules

$$S \rightarrow bbbSaa \mid \varepsilon$$

- 5. Language A is nonregular. We prove this by contradiction. Suppose that A is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string $s = a^{2p}c^{3p}b^{2p}$. Note that $s \in A$, and |s| = 7p > p, so the Pumping Lemma will hold. Thus, there exists strings x, y, and z such that s = xyz and
 - (a) $xy^i z \in A$ for each $i \ge 0$,
 - (b) |y| > 0,
 - (c) $|xy| \leq p$.

Since the first p symbols of s are all a's, the third property implies that x and y consist only of a's. So z will be the rest of the a's, followed by $c^{3p}b^{2p}$. The second property states that |y| > 0, so y has at least one a. More precisely, we can then say that

$$\begin{aligned} x &= a^{j} \text{ for some } j \ge 0, \\ y &= a^{k} \text{ for some } k \ge 1, \\ z &= a^{m} c^{3p} b^{2p} \text{ for some } m > 0 \end{aligned}$$

Since $a^{2p}c^{3p}b^{2p} = s = xyz = a^j a^k a^m c^{3p}b^{2p} = a^{j+k+m}c^{3p}b^{2p}$, we must have that

j + k + m = 2p.

The first property implies that $xy^2z \in A$, but

$$xy^{2}z = a^{j}a^{k}a^{k}a^{m}c^{3p}b^{2p}$$
$$= a^{2p+k}c^{3p}b^{2p}$$

since j + k + m = 2p. Hence, $xy^2z \notin A$ since $k \ge 1$, and we get a contradiction. Therefore, A is a nonregular language.