CS 341, Fall 2012, Face-to-Face Section Solutions for Midterm 1

1. (a) True. By Corollary 1.40 and Theorem 1.54.
(b) True. Homework 4, problem 5d.
(c) True, by Lemma 2.27 and Theorem 2.9.
(d) False. Let $A=\{0,1\}^{*}$ and $B=\left\{w w \mid w \in\{0,1\}^{*}\right\}$. Language A has CFG with rules $S \rightarrow 0 S|1 S| \varepsilon$, so it is context-free. Slide 2-108 shows that B is not context-free.
(e) True. Finite languages are regular by the theorem on slide 1-81.
(f) False. The language $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is context-free since it has CFG with rules $S \rightarrow 0 S 1 \mid \varepsilon$, but it is non-regular, as shown on slide 1-90.
(g) False. The language a^{*} is regular but infinite.
(h) False. Corollary 1.40 shows that a language is regular if and only if it has an NFA.
(i) False. Homework 6, problem 2(a).
(j) True. If A has a regular expression, then it must be regular by Theorem 1.54. Homework 2, problem 3, shows that \bar{A} must be regular. Corollary 2.32 implies that \bar{A} must be context-free.
2. (a) $1^{*} 0\left(1 \cup 01^{*} 0\right)^{*}$
(b) $\left(a \cup b(a \cup b)^{*} a\right) b^{*}$
(c) slide 1-50.
(d) Homework 5, problem 3a.
3. A DFA for C is below:

4. (a) $G=(V, \Sigma, R, S)$ with set of variables $V=\{S\}$, where S is the start variable; set of terminals $\Sigma=\{a, b\}$; and rules

$$
S \rightarrow b b b S a a \mid \varepsilon
$$

(b)

5. Language A is nonregular. We prove this by contradiction. Suppose that A is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string $s=a^{2 p} c^{3 p} b^{2 p}$. Note that $s \in A$, and $|s|=7 p>p$, so the Pumping Lemma will hold. Thus, there exists strings x, y, and z such that $s=x y z$ and
(a) $x y^{i} z \in A$ for each $i \geq 0$,
(b) $|y|>0$,
(c) $|x y| \leq p$.

Since the first p symbols of s are all a 's, the third property implies that x and y consist only of a 's. So z will be the rest of the a 's, followed by $c^{3 p} b^{2 p}$. The second property states that $|y|>0$, so y has at least one a. More precisely, we can then say that

$$
\begin{aligned}
& x=a^{j} \text { for some } j \geq 0 \\
& y=a^{k} \text { for some } k \geq 1 \\
& z=a^{m} c^{3 p} b^{2 p} \text { for some } m \geq 0
\end{aligned}
$$

Since $a^{2 p} c^{3 p} b^{2 p}=s=x y z=a^{j} a^{k} a^{m} c^{3 p} b^{2 p}=a^{j+k+m} c^{3 p} b^{2 p}$, we must have that

$$
j+k+m=2 p
$$

The first property implies that $x y^{2} z \in A$, but

$$
\begin{aligned}
x y^{2} z & =a^{j} a^{k} a^{k} a^{m} c^{3 p} b^{2 p} \\
& =a^{2 p+k} c^{3 p} b^{2 p}
\end{aligned}
$$

since $j+k+m=2 p$. Hence, $x y^{2} z \notin A$ since $k \geq 1$, and we get a contradiction. Therefore, A is a nonregular language.

