Midterm Exam 1
CS 341: Foundations of Computer Science II - Fall 2012, day section
Prof. Marvin K. Nakayama

Print family (or last) name: \qquad

Print given (or first) name: \qquad

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 7 pages in total, numbered 1 to 7 . Make sure your exam has all the pages.
- Note the number written on the upper right-hand corner of the first page. On the sign-up sheet being passed around, sign your name next to this number.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratchwork area or the backs of the sheets to work out your answers before filling in the answer space.
2. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	5	Total
Points						

1. [20 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - A language has a regular expression if and only if it has an NFA.
(b) TRUE FALSE - If we remove a finite set of strings from a nonregular language, then the result is a nonregular language.
(c) TRUE FALSE - If a language A has a PDA, then A is generated by a context-free grammar in Chomsky normal form.
(d) TRUE FALSE - If A is a context-free language and B is a language such that $B \subseteq A$, then B must be a context-free language.
(e) TRUE FALSE - The language $\left\{0^{n} 1^{n} \mid 0 \leq n \leq 1000\right\}$ is regular.
(f) TRUE FALSE - If a language is context-free, then it must be regular.
(g) TRUE FALSE - If a language is regular, then it must be finite.
(h) TRUE FALSE - Nonregular languages are recognized by NFAs.
(i) TRUE FALSE - The class of context-free languages is closed under intersection.
(j) TRUE FALSE - If a language A has a regular expression, then \bar{A} must be a context-free language.
2. [20 points] Give short answers to each of the following parts. Each answer should be at most a few sentences. Be sure to define any notation that you use.
(a) Let $\Sigma=\{0,1\}$, and let A be the set of strings over Σ having an odd number of 0 's. Give a regular expression for A.
(b) Give a regular expression for the language recognized by the NFA below.

Answer: \qquad

(c) Suppose that language A_{1} is recognized by NFA N_{1} below, and language A_{2} is recognized by NFA N_{2} below. Note that the transitions are not drawn in N_{1} and N_{2}. Draw a picture of an NFA for $A_{1} \circ A_{2}$.

(d) Suppose that A_{1} is a language defined by a CFG $G_{1}=\left(V_{1}, \Sigma, R_{1}, S_{1}\right)$, and A_{2} is a language defined by a CFG $G_{2}=\left(V_{2}, \Sigma, R_{2}, S_{2}\right)$, where the alphabet Σ is the same for both languages and $V_{1} \cap V_{2}=\emptyset$. Let $A_{3}=A_{1} \cup A_{2}$. Give a CFG G_{3} for A_{3} in terms of G_{1} and G_{2}. You do not have to prove the correctness of your CFG G_{3}, but do not give just an example.
3. [20 points] Let N be the following NFA with $\Sigma=\{a, b\}$, and let $C=L(N)$.

Give a DFA for C.

Scratch-work area

4. [25 points] Consider the alphabet $\Sigma=\{a, b\}$ and the language

$$
L=\left\{b^{3 n} a^{2 n} \mid n \geq 0\right\} .
$$

(a) Give a context-free grammar G for L. Be sure to specify G as a 4-tuple $G=(V, \Sigma, R, S)$.
(b) Give a PDA for L. You only need to draw the graph.

Scratch-work area

5. [15 points] Recall the pumping lemma for regular languages:

Theorem: If L is a regular language, then there exists a pumping length p where, if $s \in L$ with $|s| \geq p$, then there exists strings x, y, z such that $s=x y z$ and (i) $x y^{i} z \in L$ for each $i \geq 0$, (ii) $|y| \geq 1$, and (iii) $|x y| \leq p$.
Let $A=\left\{a^{2 n} c^{3 n} b^{2 n} \mid n \geq 0\right\}$. Is A a regular or nonregular language? If A is regular, give a regular expression for A. If A is not regular, prove that it is a nonregular language.

Circle one: Regular Language Nonregular Language

