## CS 341, Fall 2012

## Solutions for Midterm 2

1. (a) False, e.g., $\overline{A_{\mathrm{TM}}}$ is not Turing-recognizable.
(b) False, e.g., if $A=\{00,11,111\}$ and $B=\{00,11\}$, then $\bar{A} \cap B=\emptyset$, but $A \neq B$. For $A$ and $B$ to be equal, we instead need $(\bar{A} \cap B) \cup(A \cap \bar{B})=\emptyset$.
(c) False. A TM $M$ may loop on input $w$.
(d) True, by Theorem 4.9.
(e) True, by slide 4-38.
(f) False, by Theorem 4.8.
(g) False, by Theorem 4.11.
(h) True, by Theorem 4.5.
(i) False, by Homework 9, problem 1.
(j) False, by Corollary 4.23.
2. (a) No, because $f(x)=f(z)=2$.
(b) Yes, because $f(y)=1$ and $f(x)=2$, so all members of $B$ are hit by $f$.
(c) No, because $f$ is not one-to-one.
(d) An algorithm is a Turing machine that always halts.
(e) A language $L_{1}$ that is Turing-recognizable has a Turing machine $M_{1}$ such that $M_{1}$ accepts each $w \in L_{1}$, and $M_{1}$ loops or rejects every $w \notin L_{1}$. A language $L_{2}$ that is Turing-decidable has a Turing machine $M_{2}$ such that $M_{2}$ accepts each $w \in L_{2}$, and $M_{2}$ rejects every $w \notin L_{2}$; i.e., $M_{2}$ never loops. It is important to note that Turing-recognizable and Turing-decidable are properties of languages and not Turing machines.
3. (a) $q_{1} 110 \# 01 \quad x q_{3} 10 \# 01 \quad x 1 q_{3} 0 \# 01 \quad x 10 q_{3} \# 01 \quad x 10 \# q_{5} 01 \quad x 10 \# 0 q_{\text {reject }} 1$
(b) $\quad q_{1} 0 \# 0 \quad x q_{2} \# 0 \quad x \# q_{4} 0 \quad x q_{6} \# x \quad q_{7} x \# x \quad x q_{1} \# x \quad x \# q_{8} x \quad x \# x q_{8}$ $x \# x \sqcup q_{\text {accept }}$
4. [This is from slides $4-39$ and 4-40.] Let $\mathcal{L}$ be the set of all languages over an alphabet $\Sigma$. Let $\mathcal{B}$ be the set of all infinite binary sequences, and we know that $\mathcal{B}$ is uncountable from class (this can be shown by using a diagonalization argument). We will construct a mapping $\chi: \mathcal{L} \rightarrow \mathcal{B}$ such that $\chi$ is a correspondence, which will establish that $\mathcal{L}$ and $\mathcal{B}$ are of the same size. Then since $\mathcal{B}$ is uncountable, we will have that $\mathcal{L}$ is also uncountable.

We now describe how to construct the mapping $\chi$. First let $s_{1}, s_{2}, s_{3}, \ldots$ be a lexicographic listing of the strings in $\Sigma^{*}$. For any language $A \subseteq \Sigma^{*}$, define $\chi(A)=$ $b_{1} b_{2} b_{3} \cdots$, where $b_{i}=1$ if $s_{i} \in A$, and $b_{i}=0$ if $s_{i} \notin A$. Thus, the $i$ th bit in the infinite binary sequence $\chi(A)$ is 1 if and only if the language $A$ contains the $i$ th
string $s_{i}$. We call $\chi(A)$ the characteristic sequence of the language $A$. For example, if $\Sigma=\{0,1\}$ and $A=\{0,00,01,000, \ldots\}$, then
$\left.\begin{array}{rllllllllllll}\Sigma^{*} & = & \{ & \varepsilon, & 0, & 1, & 00, & 01, & 10, & 11, & 000, & \ldots & \} \\ A & = & \{ & & 0, & & 00, & 01, & & & 000, & \ldots & \} \\ \chi(A) & = & & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & \ldots\end{array}\right\}$

Now we show that $\chi: \mathcal{L} \rightarrow \mathcal{B}$ is a correspondence.

- To show that $\chi$ is one-to-one, note that if languages $A_{1}$ and $A_{2}$ such that $A_{1} \neq A_{2}$, then they differ in at least one string $s_{i}$; i.e., one of the languages includes $s_{i}$ and the other does not. Then $\chi\left(A_{1}\right)$ and $\chi\left(A_{2}\right)$ differ in the $i$ th bit, so $\chi\left(A_{1}\right) \neq \chi\left(A_{2}\right)$. Hence, $A_{1} \neq A_{2}$ implies $\chi\left(A_{1}\right) \neq \chi\left(A_{2}\right)$, so $\chi$ is one-to-one.
- To show that $\chi$ is onto, note that given any infinite binary sequence $b_{1} b_{2} b_{3} \cdots \in$ $\mathcal{B}$, the language $A$ defined such that it includes string $s_{i}$ if and only if $b_{i}=1$ has $\chi(A)=b_{1} b_{2} b_{3} \cdots$. Thus, for every element $b \in \mathcal{B}$, there is an element in $\mathcal{L}$ that $\chi$ maps to $b$. Hence, $\chi$ is onto.

Since $\chi$ is one-to-one and onto, it is a correspondence.
Hence, $\mathcal{L}$ and $\mathcal{B}$ are of the same size. Since we know that $\mathcal{B}$ is uncountable, that must mean that $\mathcal{L}$ is also uncountable.
5. Define the language as

$$
C=\{\langle D, R\rangle \mid D \text { is a DFA and } R \text { is a regular expression with } L(D)=L(R)\} .
$$

Recall that the proof of Theorem 4.5 defines a Turing machine $F$ that decides the language $E Q_{\text {DFA }}=\{\langle A, B\rangle \mid A$ and $B$ are DFAs and $L(A)=L(B)\}$. Then the following Turing machine $T$ decides $C$ :
$T=$ "On input $\langle D, R\rangle$, where $D$ is a DFA and $R$ is a regular expression:

1. Convert $R$ into an equivalent DFA $D^{\prime}$
using the algorithm in the proof of Kleene's Theorem.
2. Run TM $F$ for $E Q_{\text {DFA }}$ on input $\left\langle D, D^{\prime}\right\rangle$.
3. If $F$ accepts, accept. If $F$ rejects, reject."
4. This is Homework 8, problem 4. We need to show there is a Turing machine that recognizes $\overline{E_{\mathrm{TM}}}$, the complement of $E_{\mathrm{TM}}$. Let $s_{1}, s_{2}, s_{3}, \ldots$ be a list of all strings in $\Sigma^{*}$. For a given Turing machine $M$, we want to determine if any of the strings $s_{1}, s_{2}, s_{3}, \ldots$ is accepted by $M$. If $M$ accepts at least one string $s_{i}$, then $L(M) \neq \emptyset$, so $\langle M\rangle \in \overline{E_{\mathrm{TM}}}$; if $M$ accepts none of the strings, then $L(M)=\emptyset$, so $\langle M\rangle \notin \overline{E_{\mathrm{TM}}}$. However, we cannot just run $M$ sequentially on the strings $s_{1}, s_{2}, s_{3}, \ldots$. For example, suppose $M$ accepts $s_{2}$ but loops on $s_{1}$. Since $M$ accepts $s_{2}$, we have that $\langle M\rangle \in \overline{E_{\mathrm{TM}}}$. But if we run $M$ sequentially on $s_{1}, s_{2}, s_{3}, \ldots$, we never get past
the first string. The following Turing machine avoids this problem and recognizes $\overline{E_{\mathrm{TM}}}$ :

$$
R=\text { "On input }\langle M\rangle \text {, where } M \text { is a Turing machine: }
$$

1. Repeat the following for $i=1,2,3, \ldots$.
2. Run $M$ for $i$ steps on each input $s_{1}, s_{2}, \ldots, s_{i}$.
3. If any computation accepts, accept.
