1.

3.

CS 341, Fall 2012
Solutions for Midterm 2

(a) False, e.g., Aty is not Turing-recognizable.

(b) False, e.g.,if A ={00,11,111} and B = {00, 11}, then ANB =), but A # B.
For A and B to be equal, we instead need (AN B)U (AN B) = 0.

(c) False. A TM M may loop on input w.
True, by Theorem 4.9.

True, by slide 4-38.

False, by Theorem 4.8.

False, by Theorem 4.11.

True, by Theorem 4.5.

)
)
)
)
)
)
(i) False, by Homework 9, problem 1.
) False, by Corollary 4.23.
)
)
)
)
)

that M; accepts each w € Ly, and M; loops or rejects every w &€ L;. A
language Lo that is Turing-decidable has a Turing machine M, such that M,
accepts each w € Lo, and M, rejects every w ¢ Lo; i.e., My never loops.
It is important to note that Turing-recognizable and Turing-decidable are
properties of languages and not Turing machines.

(a) @110#01 2q310#01 21g30#01 x10¢g3#01 210#¢501 210#0¢reject]

(b) @0#0 z@#0 z#¢0 zqsH#zr gaHr TaHr THer THgs
x#xUQaccept

4. [This is from slides 4-39 and 4-40.] Let £ be the set of all languages over an

alphabet Y. Let B be the set of all infinite binary sequences, and we know that B
is uncountable from class (this can be shown by using a diagonalization argument).
We will construct a mapping x : £ — B such that x is a correspondence, which
will establish that £ and B are of the same size. Then since B is uncountable, we
will have that £ is also uncountable.

We now describe how to construct the mapping y. First let s1,s9,53,... be a
lexicographic listing of the strings in ¥*. For any language A C ¥*, define x(A) =
bibobs - -, where b; = 1if s; € A, and b; = 0 if s; & A. Thus, the ith bit in the
infinite binary sequence x(A) is 1 if and only if the language A contains the ith

string s;. We call x(A) the characteristic sequence of the language A. For example,

if ¥ = {0,1} and A = {0,00,01,000,...}, then

> = { & 0 1, 00, 01, 10, 11, 000, ... }
A = { 0, 00, 01, 000, ... }
Y(4) = 0o 1 o 1 1 0o o0 1

Now we show that x : £ — B is a correspondence.

e To show that x is one-to-one, note that if languages A; and A, such that
Ay # A,, then they differ in at least one string s;; i.e., one of the languages
includes s; and the other does not. Then x(A;) and x(Ajy) differ in the ith
bit, so x(A41) # x(As). Hence, A; # Ay implies x(A4;) # x(As), so x is

one-to-one.

e To show that y is onto, note that given any infinite binary sequence b1bsb3 - - - €
B, the language A defined such that it includes string s; if and only if b; = 1
has x(A) = bybebs - - -. Thus, for every element b € B, there is an element in
L that x maps to b. Hence, y is onto.

Since x is one-to-one and onto, it is a correspondence.

Hence, £ and B are of the same size. Since we know that B is uncountable, that
must mean that £ is also uncountable.

. Define the language as
C={(D,R) | Dis a DFA and R is a regular expression with L(D) = L(R) }.

Recall that the proof of Theorem 4.5 defines a Turing machine F' that decides the

language FQppy = { (A, B) | A and B are DFAs and L(A) = L(B) }. Then the
following Turing machine T" decides C"

T = “Oninput (D, R), where D is a DFA and R is a regular expression:
1. Convert R into an equivalent DFA D’
using the algorithm in the proof of Kleene’s Theorem.
2. Run TM F for EQpg, on input (D, D).
3. If F accepts, accept. If F rejects, reject.”

. This is Homework 8, problem 4. We need to show there is a Turing machine that
recognizes Em, the complement of Ery. Let sq,9,53,... be a list of all strings
in 2*. For a given Turing machine M, we want to determine if any of the strings
S1, S92, 83, . . . is accepted by M. If M accepts at least one string s;, then L(M) # 0,
so (M) € Ery; if M accepts none of the strings, then L(M) = 0, so (M) & Epy.
However, we cannot just run M sequentially on the strings si,ss,ss,.... For
example, suppose M accepts s, but loops on s;. Since M accepts sy, we have
that (M) € Ery. But if we run M sequentially on sy, 59, 53, . . ., we never get past

2

the first string. The following Turing machine avoids this problem and recognizes

ETM:
R = “On input (M), where M is a Turing machine:
1. Repeat the following for ¢ =1,2,3,....
2. Run M for i steps on each input sq, s9,...,S;.
3. If any computation accepts, accept.

