CS 341, Fall 2012 Solutions for Midterm 2

- 1. (a) False, e.g., $\overline{A_{\rm TM}}$ is not Turing-recognizable.
 - (b) False, e.g., if $A = \{00, 11, 111\}$ and $B = \{00, 11\}$, then $\overline{A} \cap B = \emptyset$, but $A \neq B$. For A and B to be equal, we instead need $(\overline{A} \cap B) \cup (A \cap \overline{B}) = \emptyset$.
 - (c) False. A TM M may loop on input w.
 - (d) True, by Theorem 4.9.
 - (e) True, by slide 4-38.
 - (f) False, by Theorem 4.8.
 - (g) False, by Theorem 4.11.
 - (h) True, by Theorem 4.5.
 - (i) False, by Homework 9, problem 1.
 - (j) False, by Corollary 4.23.
- 2. (a) No, because f(x) = f(z) = 2.
 - (b) Yes, because f(y) = 1 and f(x) = 2, so all members of B are hit by f.
 - (c) No, because f is not one-to-one.
 - (d) An algorithm is a Turing machine that always halts.
 - (e) A language L_1 that is Turing-recognizable has a Turing machine M_1 such that M_1 accepts each $w \in L_1$, and M_1 loops or rejects every $w \notin L_1$. A language L_2 that is Turing-decidable has a Turing machine M_2 such that M_2 accepts each $w \in L_2$, and M_2 rejects every $w \notin L_2$; i.e., M_2 never loops. It is important to note that Turing-recognizable and Turing-decidable are properties of *languages* and not *Turing machines*.
- 3. (a) $q_1 110 \# 01 \quad xq_3 10 \# 01 \quad x 1q_3 0 \# 01 \quad x 10q_3 \# 01 \quad x 10 \# q_5 01 \quad x 10 \# 0q_{\text{reject}} 1$ (b) $q_1 0 \# 0 \quad xq_2 \# 0 \quad x \# q_4 0 \quad xq_6 \# x \quad q_7 x \# x \quad xq_1 \# x \quad x \# q_8 x \quad x \# xq_8 x$ $x \# x \sqcup q_{\text{accept}}$
- 4. [This is from slides 4-39 and 4-40.] Let \mathcal{L} be the set of all languages over an alphabet Σ . Let \mathcal{B} be the set of all infinite binary sequences, and we know that \mathcal{B} is uncountable from class (this can be shown by using a diagonalization argument). We will construct a mapping $\chi : \mathcal{L} \to \mathcal{B}$ such that χ is a correspondence, which will establish that \mathcal{L} and \mathcal{B} are of the same size. Then since \mathcal{B} is uncountable, we will have that \mathcal{L} is also uncountable.

We now describe how to construct the mapping χ . First let s_1, s_2, s_3, \ldots be a lexicographic listing of the strings in Σ^* . For any language $A \subseteq \Sigma^*$, define $\chi(A) = b_1 b_2 b_3 \cdots$, where $b_i = 1$ if $s_i \in A$, and $b_i = 0$ if $s_i \notin A$. Thus, the *i*th bit in the infinite binary sequence $\chi(A)$ is 1 if and only if the language A contains the *i*th string s_i . We call $\chi(A)$ the characteristic sequence of the language A. For example, if $\Sigma = \{0, 1\}$ and $A = \{0, 00, 01, 000, \ldots\}$, then

Σ^*	=	{	$\varepsilon,$	0,	1,	00,	01,	10,	11,	000,	 }
A	=	{		0,		00,	01,			000,	 }
$\chi(A)$	=		0	1	0	1	1	0	0	1	

Now we show that $\chi : \mathcal{L} \to \mathcal{B}$ is a correspondence.

- To show that χ is one-to-one, note that if languages A_1 and A_2 such that $A_1 \neq A_2$, then they differ in at least one string s_i ; i.e., one of the languages includes s_i and the other does not. Then $\chi(A_1)$ and $\chi(A_2)$ differ in the *i*th bit, so $\chi(A_1) \neq \chi(A_2)$. Hence, $A_1 \neq A_2$ implies $\chi(A_1) \neq \chi(A_2)$, so χ is one-to-one.
- To show that χ is onto, note that given any infinite binary sequence $b_1b_2b_3\cdots \in \mathcal{B}$, the language A defined such that it includes string s_i if and only if $b_i = 1$ has $\chi(A) = b_1b_2b_3\cdots$. Thus, for every element $b \in \mathcal{B}$, there is an element in \mathcal{L} that χ maps to b. Hence, χ is onto.

Since χ is one-to-one and onto, it is a correspondence.

Hence, \mathcal{L} and \mathcal{B} are of the same size. Since we know that \mathcal{B} is uncountable, that must mean that \mathcal{L} is also uncountable.

5. Define the language as

 $C = \{ \langle D, R \rangle \mid D \text{ is a DFA and } R \text{ is a regular expression with } L(D) = L(R) \}.$

Recall that the proof of Theorem 4.5 defines a Turing machine F that decides the language $EQ_{\text{DFA}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$. Then the following Turing machine T decides C:

- T = "On input $\langle D, R \rangle$, where D is a DFA and R is a regular expression:
 - 1. Convert R into an equivalent DFA D'using the algorithm in the proof of Kleene's Theorem.
 - **2.** Run TM F for EQ_{DFA} on input $\langle D, D' \rangle$.
 - **3.** If F accepts, accept. If F rejects, reject."
- 6. This is Homework 8, problem 4. We need to show there is a Turing machine that recognizes \overline{E}_{TM} , the complement of E_{TM} . Let s_1, s_2, s_3, \ldots be a list of all strings in Σ^* . For a given Turing machine M, we want to determine if any of the strings s_1, s_2, s_3, \ldots is accepted by M. If M accepts at least one string s_i , then $L(M) \neq \emptyset$, so $\langle M \rangle \in \overline{E}_{\text{TM}}$; if M accepts none of the strings, then $L(M) = \emptyset$, so $\langle M \rangle \notin \overline{E}_{\text{TM}}$. However, we cannot just run M sequentially on the strings s_1, s_2, s_3, \ldots For example, suppose M accepts s_2 but loops on s_1 . Since M accepts s_2 , we have that $\langle M \rangle \in \overline{E}_{\text{TM}}$. But if we run M sequentially on s_1, s_2, s_3, \ldots , we never get past

the first string. The following Turing machine avoids this problem and recognizes $\overline{E_{\text{TM}}}$:

- R = "On input $\langle M \rangle$, where M is a Turing machine:
 - 1. Repeat the following for $i = 1, 2, 3, \ldots$
 - **2.** Run *M* for *i* steps on each input s_1, s_2, \ldots, s_i .
 - **3.** If any computation accepts, *accept*.