Midterm Exam 2
CS 341: Foundations of Computer Science II — Fall 2012, day section
Prof. Marvin K. Nakayama

Print family (or last) name: __

Print given (or first) name: __

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date: ___

- This exam has 8 pages in total, numbered 1 to 8. Make sure your exam has all the pages.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:
 1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
 2. DFA stands for deterministic finite automaton; NFA stands for nondeterministic finite automaton; CFG stands for context-free grammar; PDA stands for pushdown automaton.
 3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step. Unless you are specifically asked to prove a theorem from the book, you may assume that the theorems in the textbook hold; i.e., you do not have to reprove the theorems in the textbook. When using a theorem from the textbook, make sure you provide enough detail so that it is clear which result you are using; e.g., say something like, “By the theorem that states $S^{**} = S^*$, it follows that . . . ”

<table>
<thead>
<tr>
<th>Problem</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1
1. [20 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE.

(a) TRUE FALSE — Every language is Turing-recognizable.

(b) TRUE FALSE — Two languages \(A \) and \(B \) are equal if \(\overline{A} \cap B = \emptyset \).

(c) TRUE FALSE — For any Turing machine \(M = (Q, \Sigma, \Gamma, \delta, q_1, q_{\text{accept}}, q_{\text{reject}}) \) and string \(w \in \Sigma^* \), \(M \) will either accept or reject \(w \).

(d) TRUE FALSE — If a language is context-free, then it must be Turing-decidable.

(e) TRUE FALSE — The set of all Turing machines is countable.

(f) TRUE FALSE — The problem of determining if a context-free grammar generates the empty language is undecidable.

(g) TRUE FALSE — The universal Turing machine decides

\[A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts string } w \} \]

(h) TRUE FALSE — The language

\[EQ_{\text{DFA}} = \{ \langle C, D \rangle \mid C \text{ and } D \text{ are DFAs with } L(C) = L(D) \} \]

is Turing-decidable.

(i) TRUE FALSE — The set of all infinite binary sequences is countable.

(j) TRUE FALSE — There are some languages recognized by a 5-tape, nondeterministic Turing machine that cannot be recognized by a 1-tape, deterministic Turing machine.
2. [20 points] Give a short answer (at most three sentences) for each part below. For parts (a), (b) and (c), let \(A = \{x, y, z\} \) and \(B = \{1, 2\} \), and define the function \(f : A \to B \) such that

\[
\begin{align*}
f(x) &= 2, \\
f(y) &= 1, \\
f(z) &= 2.
\end{align*}
\]

Explain your answers.

(a) Is \(f \) one-to-one?

(b) Is \(f \) onto?

(c) Is \(f \) a correspondence?
(d) What does the Church-Turing Thesis say?

(e) What is the difference between a Turing-recognizable language and a Turing-decidable language?
3. [20 points] Consider the below Turing machine \(M = (Q, \Sigma, \Gamma, \delta, q_1, q_{\text{accept}}, q_{\text{reject}}) \) with
\(Q = \{q_1, \ldots, q_8, q_{\text{accept}}, q_{\text{reject}}\} \), \(\Sigma = \{0, 1, \#\} \), \(\Gamma = \{0, 1, \#, x, \#, \omega\} \), and transitions below.

![Turing machine diagram]

To simplify the figure, we don’t show the reject state \(q_{\text{reject}} \) or the transitions going to the reject state. Those transitions occur implicitly whenever a state lacks an outgoing transition for a particular symbol. Thus, because in state \(q_5 \) no outgoing arrow with a \# is present, if a \# occurs under the head when the machine is in state \(q_5 \), it goes to state \(q_{\text{reject}} \). For completeness, we say that in each of these transitions to the reject state, the head writes the same symbol as is read and moves right.

In each of the parts below, give the sequence of configurations that \(M \) enters when started on the indicated input string.

(a) 110#01

(b) 0#0
Each of the following problems requires you to prove a result. Unless stated otherwise, in your proofs, you can apply any theorems that we went over in class without proving them, except for the result you are asked to prove in the problem. When citing a theorem, make sure that you give enough details so that it is clear what theorem you are using (e.g., say something like, “By the theorem that says every context-free language has a CFG in Chomsky normal form, we can show that . . .”).

4. [15 points] Prove that the set of all languages over an alphabet Σ is uncountable.
5. [15 points] Consider the problem of determining whether a DFA and a regular expression are equivalent. Express this problem as a language and show that it is decidable.
6. [10 points] Recall

\[E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM with } L(M) = \emptyset \}. \]

Prove that \(E_{TM} \) is co-Turing-recognizable.