CS 341, Spring 2012
 Solutions for Midterm 1

1. (a) True. See slide 2-111.
(b) True. HW 4, problem 5(a).
(c) True. HW 4, problem 5(c).
(d) False. 1* is regular since it has a regular expression, but this language is infinite.
(e) True. By HW 2, problem 3, we know \bar{A} is regular. Since \bar{A} and B are regular, then $\bar{A} \cup B$ is regular by Theorem 1.25. Theorem 1.49 then implies $(\bar{A} \cup B)^{*}$ is regular.
(f) False. See HW 6, problem 2(a).
(g) False. For example, $A=\left\{0^{n} 1^{n} 0^{n} \mid n \geq 0\right\}$ is a subset of $B=L\left((0 \cup 1)^{*}\right)$, but A is non-context-free and B is context-free.
(h) True. Use the pumping lemma with string $a^{r} b^{r}$, where $r=\max (p, 3)$ and p is the pumping length.
(i) True. Since A has a regular expression, A is a regular language by Theorem 1.54. Then Corollary 2.32 implies A is also context-free, so it has a CFG. Theorem 2.9 then ensures that A has a CFG in Chomsky normal form.
(j) True. Suppose A is non-context-free but regular. But then Corollary 2.32 implies A is context-free, which is a contradiction.
2. (a) $b^{*} a b^{*} \cup b^{*} a b^{*}(a \cup \varepsilon) b^{*}$. Another regular expression is $b^{*}\left(a \cup a b^{*}(a \cup \varepsilon)\right) b^{*}$. There are infinitely many regular expressions for the language.
(b) $G^{\prime}=\left(V^{\prime}, \Sigma, R^{\prime}, S_{0}\right)$, where $V^{\prime}=V \cup\left\{S_{0}\right\}, S_{0}$ is the (new) starting variable, Σ is the same alphabet of terminals as in G, and $R^{\prime}=R \cup\left\{S_{0} \rightarrow S S_{0} \mid \varepsilon\right\}$.
(c) $M_{3}=\left(Q_{3}, \Sigma, \delta_{3}, q_{3}, F_{3}\right)$, where $Q_{3}=Q_{1} \times Q_{2} ; \Sigma$ is the same alphabet as M_{1} and M_{2} have; the transition function δ_{2} satisfies $\delta((q, r), \ell)=\left(\delta_{1}(q, \ell), \delta_{2}(r, \ell)\right)$ for $(q, r) \in Q_{3}$ and $\ell \in \Sigma$; the starting state $q_{3}=\left(q_{1}, q_{2}\right)$; and $F_{3}=\left(Q_{1} \times F_{2}\right) \cap\left(F_{1} \times\right.$ Q_{2}), which also can be written as $F_{1} \times F_{2}$.
(d) After one step, the CFG is then

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow A 1 S A|1 S A| A 1 S|1 S| A 0|0| \varepsilon \\
A & \rightarrow 0 S 0
\end{aligned}
$$

3. (a) A regular expression for L_{1} is

$$
R_{1}=(+\cup-\cup \varepsilon) \Sigma_{1} \Sigma_{1}^{*}
$$

where $\Sigma_{1}=\{0,1,2, \ldots, 9\}$ as defined in the problem.
(b) An NFA for L_{1} is

(c) Define $\Sigma_{2}=\{-,+\}$, as given in the problem. Then a DFA for L_{1} is

(d) A regular expression for L_{2} is

$$
R_{2}=(+\cup-\cup \varepsilon)\left(\Sigma_{1} \Sigma_{1}^{*} \cdot \Sigma_{1}^{*} \cup . \Sigma_{1} \Sigma_{1}^{*}\right)
$$

Note that the regular expression $(+\cup-\cup \varepsilon) \Sigma_{1}^{*}$. Σ_{1}^{*} is not correct since it can generate the strings ".", "+." and "-.", which are not valid floating-point numbers.
(e) An NFA for L_{2} is

(f) Note that $L=L_{1} \cup L_{2}$, so a regular expression for L is

$$
R_{3}=R_{1} \cup R_{2}
$$

(g) We can construct an NFA for L by taking the union of the NFA's for L_{1} and L_{2} as follows:

There are many other correct answers for this and the other parts.
4. (a) $G=(V, \Sigma, R, S)$ with set of variables $V=\{S, X\}$, where S is the start variable; set of terminals $\Sigma=\{a, b, c\}$; and rules

$$
\begin{aligned}
S & \rightarrow b S c \mid X \\
X & \rightarrow a X c \mid \varepsilon
\end{aligned}
$$

(b) PDA

For every b and a read in the first part of the string, the PDA pushes an x onto the stack. Then it must read a c for each x popped off the stack.
5. Language A is nonregular. We prove this by contradiction. Suppose that A is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string $s=a^{p} b a^{p} b$. Note that $s \in A$, and $|s|=2 p+2>p$, so the Pumping Lemma will hold. Thus, there exists strings x, y, and z such that $s=x y z$ and
(a) $x y^{i} z \in A$ for each $i \geq 0$,
(b) $|y|>0$,
(c) $|x y| \leq p$.

Since the first p symbols of s are all a 's, the third property implies that x and y consist of only a 's. So z will be the rest of the a 's from the beginning, followed by $b a^{p} b$. The second property states that $|y|>0$, so y has at least one a. More precisely, we can then say that

$$
x=a^{j} \text { for some } j \geq 0
$$

$$
\begin{aligned}
& y=a^{k} \text { for some } k \geq 1 \\
& z=a^{m} b a^{p} b \text { for some } m \geq 0
\end{aligned}
$$

Since $a^{p} b a^{p} b=s=x y z=a^{j} a^{k} a^{m} b a^{p} b=a^{j+k+m} b a^{p} b$, we must have that

$$
j+k+m=p
$$

The first property implies that $x y^{2} z \in A$, and

$$
\begin{aligned}
x y^{2} z & =a^{j} a^{k} a^{k} a^{m} b a^{p} b \\
& =a^{p+k} b a^{p} b
\end{aligned}
$$

since $j+k+m=p$. If $x y^{2} z$ has odd length, then it cannot be split into equal halves, so $x y^{2} z \notin A$. If $x y^{2} z$ has even length, then the first half contains only a 's since $k \geq 1$, but the second half contains $2 b$'s. Hence, $x y^{2} z \notin A$, so we get a contradiction. Therefore, A is a nonregular language.

