CS 341, Spring 2012 Solutions for Midterm 2

- 1. (a) True, by Theorem 4.9.
 - (b) True, by Theorem 4.9.
 - (c) False, e.g., $\overline{A_{\rm TM}}$ is not Turing-recognizable.
 - (d) False. A TM M may loop on input w.
 - (e) True. List the strings in lexicographic order.
 - (f) False. Homework 9, problem 1.
 - (g) True, by Theorems 3.13 and 3.16.
 - (h) False, by Theorem 5.4.
 - (i) True, by Theorem 4.5.
 - (j) False, by Corollary 4.23.
- 2. (a) Yes, because each element in A maps to a different element in B.
 - (b) No, because nothing in A maps to $4 \in B$.
 - (c) No, because f is not onto.
 - (d) A language L_1 that is Turing-recognizable has a Turing machine M_1 that may loop forever on a string $w \notin L_1$. A language L_2 that is Turing-decidable has a Turing machine M_2 that always halts.
 - (e) An algorithm is a Turing machine that always halts.
- 3. (a) $q_1 10\#11$ $xq_3 0\#11$ $x 0q_3\#11$ $x 0\#q_5 11$ $x 0q_6\#x1$ $xq_7 0\#x1$ $q_7 x 0\#x1$ $xq_1 0\#x1$ $xxq_2\#x1$ $xx\#q_4x1$ $xx\#xq_41$ $xx\#x1q_{\text{reject}}$
 - (b) $q_1 0 \# 0 \quad x q_2 \# 0 \quad x \# q_4 0 \quad x q_6 \# x \quad q_7 x \# x \quad x q_1 \# x \quad x \# q_8 x \quad x \# x \ x$
- 4. This proof is given on slides 4-39 and 4-40. Write out the strings in Σ^* in lexicographic order as s_1, s_2, s_3, \ldots . Let \mathcal{B} to be the set of infinite binary sequences, which we know is uncountable from HW 9, problem 1. Define the mapping $\chi : \mathcal{L} \to \mathcal{B}$ such that for any language $A \in \mathcal{L}$, we have $\chi(A)$ is the infinite binary sequence in which the *i*th bit is 1 if and only if $s_i \in A$. The mapping χ is one-to-one since if A_1 and A_2 are two different languages, then they differ by at least one string s_j , so then $\chi(A_1)$ and $\chi(A_2)$ differ in the *j*th bit. The mapping χ is onto since if $b = (b_1, b_2, b_3, \ldots) \in \mathcal{B}$ is an infinite binary sequence, then if we define the language A_b so that the string $s_i \in A_b$ if and only if $b_i = 1$, then $\chi(A_b) = b$. Since χ is both one-to-one and onto, χ is a correspondence. Thus, \mathcal{L} is the same size as \mathcal{B} , so \mathcal{L} is uncountable since \mathcal{B} is uncountable.

5. Define the language as

 $EQ_{\text{REX}} = \{ \langle R, S \rangle \mid R \text{ and } S \text{ are regular expressions with } L(R) = L(S) \}.$

Recall that the proof of Theorem 4.5 defines a Turing machine F that decides the language $EQ_{\text{DFA}} = \{ \langle D, E \rangle \mid D \text{ and } E \text{ are DFAs with } L(D) = L(E) \}$. Then the following Turing machine T decides EQ_{REX} :

- T = "On input $\langle R, S \rangle$, where R and S are regular expressions:
 - 1. Convert R into an equivalent DFA D using Kleene's Theorem.
 - **2.** Convert S into an equivalent DFA E using Kleene's Theorem.
 - **3.** Run TM F from Theorem 4.4 on input $\langle D, E \rangle$.
 - 4. If F accepts, accept. If F rejects, reject."
- 6. This is Theorem 5.2, whose proof is given on slide 5-11. Specifically, suppose that $E_{\rm TM}$ is decidable by some TM R. Then define another TM S to decide $A_{\rm TM}$ as follows:
 - S = "On input $\langle M, w \rangle$, where M is a TM and w is a string:
 - **1.** Construct a TM M_1 from M and w as follows:

 $M_1 =$ "On input x:

- 1'. If $x \neq w$, reject.
- **2'.** If x = w, run M on input w, and *accept* if M accepts."
- **2.** Run TM R on input $\langle M_1 \rangle$.
- **3.** If *R* rejects, *accept*; if *R* accepts, *reject*."

Note that if M accepts w, then $L(M_1) = \{w\}$; if M does not accept w, then $L(M_1) = \emptyset$. Thus, $\langle M, w \rangle \in A_{\text{TM}}$ if and only if $\langle M_1 \rangle \notin E_{\text{TM}}$, so S decides A_{TM} . Thus, we have reduced A_{TM} to E_{TM} . But since A_{TM} is undecidable, we must also have that E_{TM} is undecidable.