CS 341, Fall 2013 Solutions for Midterm 1

- 1. (a) True. By HW 2, problem 3, we know \overline{A} is regular. Since \overline{A} and B are regular, then $\overline{A} \cup B$ is regular by Theorem 1.25. Theorem 1.49 then implies $(\overline{A} \cup B)^*$ is regular.
 - (b) False. See HW 6, problem 2(a).
 - (c) False. For example, $A = \{0^n 1^n 0^n \mid n \ge 0\}$ is a subset of $B = L((0 \cup 1)^*)$, but A is non-context-free and B is context-free.
 - (d) True. Use the pumping lemma with string $a^p b^p$, where $p \ge 3$ is the pumping length.
 - (e) True. Since A has a regular expression, A is a regular language by Theorem 1.54. Then Corollary 2.32 implies A is also context-free, so it has a CFG. Theorem 2.9 then ensures that A has a CFG in Chomsky normal form.
 - (f) True. Suppose A is non-context-free but regular. But then Corollary 2.32 implies A is context-free, which is a contradiction.
 - (g) True. See slide 2-111.
 - (h) True. HW 4, problem 5(a).
 - (i) True. HW 4, problem 5(c).
 - (j) False. 1^{*} is regular since it has a regular expression, but this language is infinite.
- 2. (a) $b^*ab^* \cup b^*ab^*(a \cup \varepsilon)b^*$. Another regular expression is $b^*(a \cup ab^*(a \cup \varepsilon))b^*$. There are infinitely many regular expressions for the language.
 - (b) $G' = (V', \Sigma, R', S_0)$, where $V' = V \cup \{S_0\}$, S_0 is the (new) starting variable, Σ is the same alphabet of terminals as in G, and $R' = R \cup \{S_0 \to SS_0, S_0 \to \varepsilon\}$.
 - (c) $M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3)$, where $Q_3 = Q_1 \times Q_2$; Σ is the same alphabet as M_1 and M_2 have; the transition function δ_2 satisfies $\delta((q, r), \ell) = (\delta_1(q, \ell), \delta_2(r, \ell))$ for $(q, r) \in Q_3$ and $\ell \in \Sigma$; the starting state $q_3 = (q_1, q_2)$; and $F_3 = (Q_1 \times F_2) \cap (F_1 \times Q_2)$, which also can be written as $F_1 \times F_2$.
 - (d) After one step, the CFG is then

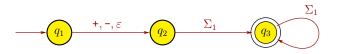
$$\begin{array}{rcl} S_{0} & \rightarrow & S \\ S & \rightarrow & A1SA \mid 1SA \mid A1S \mid 1S \mid A0 \mid 0 \mid \varepsilon \\ A & \rightarrow & 0S0 \end{array}$$

3. (a) A regular expression for L_1 is

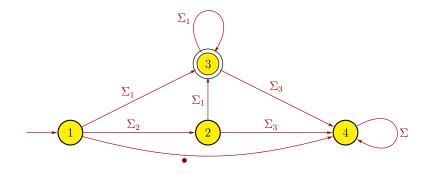
$$R_1 = (+ \cup - \cup \varepsilon) \Sigma_1 \Sigma_1^*$$

where $\Sigma_1 = \{0, 1, 2, \dots, 9\}$ as defined in the problem.

(b) An NFA for L_1 is



(c) Define $\Sigma_2 = \{ -, + \}$ and $\Sigma_3 = \Sigma_2 \cup \{ . \}$. Then a DFA for L_1 is

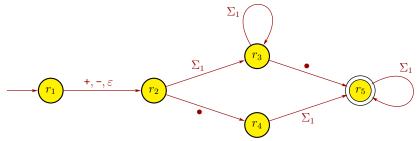


(d) A regular expression for L_2 is

$$R_2 = (+ \cup - \cup \varepsilon)(\Sigma_1 \Sigma_1^* \cdot \Sigma_1^* \cup \cdot \Sigma_1 \Sigma_1^*)$$

Note that the regular expression $(+ \cup - \cup \varepsilon) \Sigma_1^* \cdot \Sigma_1^*$ is not correct since it can generate the strings ".", "+." and "-.", which are not valid floating-point numbers.

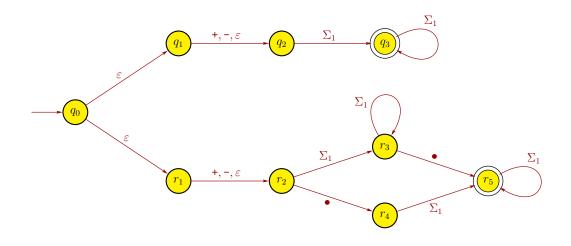
(e) An NFA for L_2 is



(f) Note that $L = L_1 \cup L_2$, so a regular expression for L is

$$R_3 = R_1 \cup R_2$$

(g) We can construct an NFA for L by taking the union of the NFA's for L_1 and L_2 as follows:



There are many other correct answers for this and the other parts.

4. (a) $G = (V, \Sigma, R, S)$ with set of variables $V = \{S, X\}$, where S is the start variable; set of terminals $\Sigma = \{a, b, c\}$; and rules

$$\begin{array}{rcl} S & \to & bSc \mid X \\ X & \to & aXc \mid \varepsilon \end{array}$$

(b) PDA

$$\xrightarrow{b, \varepsilon \to x} a, \varepsilon \to x c, x \to \varepsilon$$

$$\xrightarrow{q_1 \varepsilon, \varepsilon \to \$} q_2 \xrightarrow{\varepsilon, \varepsilon \to \varepsilon} q_3 \xrightarrow{\varepsilon, \varepsilon \to \varepsilon} q_4 \xrightarrow{\varepsilon, \$ \to \varepsilon} q_5$$

For every b and a read in the first part of the string, the PDA pushes an x onto the stack. Then it must read a c for each x popped off the stack.

- 5. Language A is nonregular. To prove this, suppose that A is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string $s = b^p a^{p+1}$. Note that $s \in A$, and $|s| = 2p + 1 \ge p$, so the Pumping Lemma will hold. Thus, there exists strings x, y, and z such that s = xyz and
 - (a) $xy^i z \in A$ for each $i \ge 0$,
 - (b) |y| > 0,
 - (c) $|xy| \le p$.

Since the first p symbols of s are all b's, the third property implies that x and y consist only of b's. So z will be the rest of the b's, followed by a^{p+1} . The second property states that |y| > 0, so y has at least one b. More precisely, we can then say that

$$\begin{aligned} x &= b^{j} \text{ for some } j \ge 0, \\ y &= b^{k} \text{ for some } k \ge 1, \\ z &= b^{m} a^{p+1} \text{ for some } m \ge 0 \end{aligned}$$

Since $b^p a^{p+1} = s = xyz = b^j b^k b^m a^{p+1} = b^{j+k+m} a^{p+1}$, we must have that j + k + m = p. The first property implies that $xy^2z \in A$, but

$$xy^{2}z = b^{j}b^{k}b^{k}b^{m}a^{p+1}$$
$$= b^{p+k}a^{p+1}$$

since j + k + m = p. Hence, $xy^2z \notin A$ because it doesn't have more a's than b's since $k \ge 1$, and we get a contradiction. Therefore, A is a nonregular language.