
CS 341, Fall 2013

Solutions for Midterm 1

1. (a) True. By HW 2, problem 3, we know A is regular. Since A and B are regular,
then A ∪ B is regular by Theorem 1.25. Theorem 1.49 then implies (A ∪ B)∗ is
regular.

(b) False. See HW 6, problem 2(a).

(c) False. For example, A = {0n1n0n | n ≥ 0} is a subset of B = L((0 ∪ 1)∗), but A
is non-context-free and B is context-free.

(d) True. Use the pumping lemma with string apbp, where p ≥ 3 is the pumping
length.

(e) True. Since A has a regular expression, A is a regular language by Theorem 1.54.
Then Corollary 2.32 implies A is also context-free, so it has a CFG. Theorem 2.9
then ensures that A has a CFG in Chomsky normal form.

(f) True. Suppose A is non-context-free but regular. But then Corollary 2.32 implies
A is context-free, which is a contradiction.

(g) True. See slide 2-111.

(h) True. HW 4, problem 5(a).

(i) True. HW 4, problem 5(c).

(j) False. 1∗ is regular since it has a regular expression, but this language is infinite.

2. (a) b∗ab∗ ∪ b∗ab∗(a ∪ ε)b∗. Another regular expression is b∗(a ∪ ab∗(a ∪ ε))b∗. There
are infinitely many regular expressions for the language.

(b) G′ = (V ′,Σ, R′, S0), where V ′ = V ∪ {S0}, S0 is the (new) starting variable, Σ is
the same alphabet of terminals as in G, and R′ = R ∪ {S0 → SS0, S0 → ε}.

(c) M3 = (Q3,Σ, δ3, q3, F3), where Q3 = Q1 × Q2; Σ is the same alphabet as M1

and M2 have; the transition function δ2 satisfies δ((q, r), ℓ) = (δ1(q, ℓ), δ2(r, ℓ)) for
(q, r) ∈ Q3 and ℓ ∈ Σ; the starting state q3 = (q1, q2); and F3 = (Q1×F2)∩ (F1 ×
Q2), which also can be written as F1 × F2.

(d) After one step, the CFG is then

S0 → S

S → A1SA | 1SA | A1S | 1S | A0 | 0 | ε

A → 0S0

3. (a) A regular expression for L1 is

R1 = ( + ∪ - ∪ ε ) Σ1Σ
∗

1

where Σ1 = { 0, 1, 2, . . . , 9 } as defined in the problem.
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(b) An NFA for L1 is

q1 q2 q3
+, -, ε Σ1

Σ1

(c) Define Σ2 = { -, + } and Σ3 = Σ2 ∪ {.}. Then a DFA for L1 is

1 2

3

4
Σ2

•

Σ1
Σ1

Σ3

Σ3

Σ1

Σ

(d) A regular expression for L2 is

R2 = ( + ∪ - ∪ ε )(Σ1Σ
∗

1 .Σ
∗

1 ∪ .Σ1 Σ
∗

1)

Note that the regular expression ( + ∪ - ∪ ε ) Σ∗

1 .Σ
∗

1 is not correct since it can
generate the strings “.”, “+.” and “-.”, which are not valid floating-point num-
bers.

(e) An NFA for L2 is

r1 r2

r3

r4

r5
+, -, ε

Σ1

•

•

Σ1

Σ1

Σ1

(f) Note that L = L1 ∪ L2, so a regular expression for L is

R3 = R1 ∪ R2

(g) We can construct an NFA for L by taking the union of the NFA’s for L1 and L2

as follows:

2



q1 q2 q3
+, -, ε Σ1

Σ1

r1 r2

r3

r4

r5
+, -, ε

Σ1

•

•

Σ1

Σ1

Σ1

q0

ε

ε

There are many other correct answers for this and the other parts.

4. (a) G = (V,Σ, R, S) with set of variables V = {S,X}, where S is the start variable;
set of terminals Σ = {a, b, c}; and rules

S → bSc | X

X → aXc | ε

(b) PDA

q1 q2 q3 q4 q5
ε, ε → $ ε, ε → ε

b, ε → x a, ε → x

ε, ε → ε

c, x → ε

ε, $ → ε

For every b and a read in the first part of the string, the PDA pushes an x onto
the stack. Then it must read a c for each x popped off the stack.

5. Language A is nonregular. To prove this, suppose that A is a regular language. Let
p be the “pumping length” of the Pumping Lemma. Consider the string s = bpap+1.
Note that s ∈ A, and |s| = 2p+ 1 ≥ p, so the Pumping Lemma will hold. Thus, there
exists strings x, y, and z such that s = xyz and

(a) xyiz ∈ A for each i ≥ 0,

(b) |y| > 0,

(c) |xy| ≤ p.

Since the first p symbols of s are all b’s, the third property implies that x and y consist
only of b’s. So z will be the rest of the b’s, followed by ap+1. The second property
states that |y| > 0, so y has at least one b. More precisely, we can then say that

x = bj for some j ≥ 0,

y = bk for some k ≥ 1,

z = bmap+1 for some m ≥ 0.
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Since bpap+1 = s = xyz = bjbkbmap+1 = bj+k+map+1, we must have that j + k+m = p.
The first property implies that xy2z ∈ A, but

xy2z = bjbkbkbmap+1

= bp+kap+1

since j + k +m = p. Hence, xy2z 6∈ A because it doesn’t have more a’s than b’s since
k ≥ 1, and we get a contradiction. Therefore, A is a nonregular language.

4


