Midterm Exam 1
CS 341: Foundations of Computer Science II - Fall 2013, day section
Prof. Marvin K. Nakayama

Print family (or last) name: $\qquad$

Print given (or first) name: $\qquad$

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 9 pages in total, numbered 1 to 9 . Make sure your exam has all the pages.
- Note the number written on the upper right-hand corner of the first page. On the sign-up sheet being passed around, sign your name next to this number.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratchwork area or the backs of the sheets to work out your answers before filling in the answer space.
2. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

| Problem | 1 | 2 | 3 | 4 | 5 | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Points |  |  |  |  |  |  |

1. [20 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - If $A$ and $B$ are regular languages, then $(\bar{A} \cup B)^{*}$ is regular.
(b) TRUE FALSE - The class of context-free languages is closed under intersection.
(c) TRUE FALSE - If $B$ is a context-free language and $A \subseteq B$, then $A$ is context-free.
(d) TRUE FALSE - The language $\left\{a^{n} b^{n} \mid n \geq 3\right\}$ is non-regular.
(e) TRUE FALSE - If a language $A$ has a regular expression, then $A$ has a CFG in Chomsky normal form.
(f) TRUE FALSE - If $A$ is a non-context-free language, then $A$ is also nonregular.
(g) TRUE FALSE - The class of context-free languages is closed under union.
(h) TRUE FALSE - If a finite number of strings is added to a regular language $A$, then the resulting language is regular.
(i) TRUE FALSE - If a finite number of strings is added to a nonregular language $A$, then the resulting language is nonregular.
(j) TRUE FALSE - If $A$ is a regular language, then $A$ is finite.
2. [20 points] Give short answers to each of the following parts. Be sure to define any notation that you use.
(a) Give a regular expression for the language recognized by the NFA below.

Answer: $\qquad$

(b) Suppose $A$ is generated by a context-free grammar $G=(V, \Sigma, R, S)$. Give a context-free grammar $G^{\prime}$ for $A^{*}$ in terms of $G$. You do not have to prove the correctness of your CFG $G^{\prime}$, but do not just give an example.
(c) Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ be a DFA with language $A_{1}$, and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ be a DFA with language $A_{2}$. Consider the language $A=A_{1} \cap A_{2}$. Give a DFA $M_{3}$ for $A$ in terms of $M_{1}$ and $M_{2}$. Your DFA $M_{3}$ must be completely general. Do not prove the correctness of your DFA $M_{3}$, but do not just give an example.
(d) Suppose that we are in the process of converting a CFG $G$ with $\Sigma=\{0,1\}$ into Chomsky normal form. We have already applied some steps in the process, and we currently have the following CFG:

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow A 1 S A|A 0| \varepsilon \\
A & \rightarrow 0 S 0 \mid \varepsilon
\end{aligned}
$$

In the next step, we want to remove the $\varepsilon$-rule $A \rightarrow \varepsilon$. Give the CFG after carrying out just this one step.
3. [ $\mathbf{2 5}$ points] Define $L$ to be the set of strings that represent numbers in a modified version of Java. The goal in this problem is to define a regular expression and an NFA for $L$. To precisely define $L$, let $\Sigma=\Sigma_{1} \cup \Sigma_{2} \cup\{$.$\} , where \Sigma_{1}=\{0,1,2, \ldots, 9\}$ is the set of digits and $\Sigma_{2}=\{+,-\}$ is the set of signs. Then $L=L_{1} \cup L_{2}$, where

- $L_{1}$ is the set of all strings that are decimal integer numbers. Specifically, $L_{1}$ consists of strings that start with an optional sign, followed by one or more digits. Examples of strings in $L_{1}$ are " 02 ", " +9 ", and " -241 ".
- $L_{2}$ is the set of all strings that are floating-point numbers that are not in exponential notation. Specifically, $L_{2}$ consists of strings that start with an optional sign, followed by zero or more digits, followed by a decimal point, and end with zero or more digits, where there must be at least one digit in the string. Examples of strings in $L_{2}$ are "13.231", "-28." and ". 124 ". All strings in $L_{2}$ have exactly one decimal point.

Assume that there is no limit on the number of digits in a string in $L$. Also, we do not allow exponential notation, nor do we allow for the suffixes L, l, F, f, D, d, at the end of numbers to denote types (long integers, floats, and doubles); these symbols are not in $\Sigma$ anyways.
(a) Give a regular expression for $L_{1}$.
(b) Give an NFA for $L_{1}$ over the alphabet $\Sigma$.
(c) Give a DFA for $L_{1}$ over the alphabet $\Sigma$. Your DFA must include all transitions.
(d) Give a regular expression for $L_{2}$.
(e) Give an NFA for $L_{2}$ over the alphabet $\Sigma$.
(f) Give a regular expression for $L$.
(g) Give an NFA for $L$ over the alphabet $\Sigma$.
4. [20 points] Consider the alphabet $\Sigma=\{a, b, c\}$ and the language

$$
L=\left\{b^{i} a^{j} c^{k} \mid i, j, k \geq 0 \text { and } i+j=k\right\} .
$$

(a) Give a context-free grammar $G$ for $L$. Be sure to specify $G$ as a 4-tuple $G=(V, \Sigma, R, S)$.
(b) Give a PDA for $L$. You only need to draw the graph.

## Scratch-work area

5. [15 points] Recall the pumping lemma for regular languages:

Theorem: If $L$ is a regular language, then there exists a pumping length $p$ where, if $s \in L$ with $|s| \geq p$, then there exists strings $x, y, z$ such that $s=x y z$ and (i) $x y^{i} z \in L$ for each $i \geq 0$, (ii) $|y| \geq 1$, and (iii) $|x y| \leq p$.
Let $A=\left\{w \in\{a, b\}^{*} \mid w\right.$ has more $a$ 's than $b$ 's $\}$. Is $A$ a regular or nonregular language? If $A$ is regular, give a regular expression for $A$. If $A$ is not regular, prove that it is a nonregular language.

Circle one:
Regular Language
Nonregular Language

