1. (a) True, since every regular language is context-free, every context-free language is decidable, and every decidable language is Turing-recognizable.

(b) False, by Theorem 4.11.

(c) False, by Corollary 4.23.

(d) False. Can decide this by the following TM:

\[M = \text{"On input } \langle N, R \rangle \text{, where } N \text{ is an NFA and } R \text{ is a regular expression:} \]

1. Check if \(\langle N, R \rangle \) is a proper encoding of NFA \(N \) and regular expression \(R \); if not, reject.
2. Convert \(N \) into equivalent DFA \(D_1 \) using algorithm in Theorem 1.39.
3. Convert \(R \) into equivalent DFA \(D_2 \) using algorithms in Lemma 1.55 and Theorem 1.39.
4. Run TM \(S \) for \(EQ_{DFA} \) on input \(\langle D_1, D_2 \rangle \). If \(S \) accepts, then accept; else, reject."

(e) True, by Theorem 4.5.

(f) False, by Theorem 3.13.

(g) False, by Corollary 3.15.

(h) False, e.g., the set of positive integers is infinite and countable.

(i) False, e.g., if \(A = \{00, 11, 111\} \) and \(B = \{00, 11\} \), then \(A \cap B = \emptyset \) but \(A \neq B \).

For \(A \) and \(B \) to be equal, we instead need \((A \cap B) \cup (A \cap \overline{B}) = \emptyset \).

(j) False. TM \(M \) may loop on input \(w \).

2. (a) No, because \(f(x) = f(y) = 1 \).

(b) No, because nothing in \(A \) maps to \(3 \in B \).

(c) No, because \(f \) is not one-to-one nor onto.

(d) A language \(L_1 \) that is Turing-recognizable has a Turing machine \(M_1 \) that may loop forever on a string \(w \notin L_1 \). A language \(L_2 \) that is Turing-decidable has a Turing machine \(M_2 \) that always halts.

(e) An algorithm is a Turing machine that always halts.

3. (a) \(q_1010\#1 \ xq_210\#1 \ x1q_20\#1 \ x10q_2\#1 \ x10\#q_41 \ x10\#q_{\text{reject}} \)

(b) \(q_11\#1 \ xq_3\#1 \ x\#q_51 \ xq_6\#x \ xq_7\#x \ xq_1\#x \ x\#q_8x \ x\#xq_8 \)

\(x\#x \uplus q_{\text{accept}} \)

4. This is Theorem 4.22. First we show that if \(A \) is decidable then it is both Turing-recognizable and co-Turing recognizable. Suppose that \(A \) is decidable. Then it must also be Turing-recognizable. Also, since \(A \) is decidable, there is a TM \(M \) that decides \(A \). Now define another TM \(M' \) to be the same as \(M \) except that we swap the accept and reject states. Then \(M' \) decides \(\overline{A} \), so \(\overline{A} \) is decidable. Hence, \(\overline{A} \)
is also Turing-recognizable, so \(A \) is co-Turing-recognizable. Thus, we proved that \(A \) is both Turing-recognizable and co-Turing-recognizable.

Now we prove the converse: if \(A \) is both Turing-recognizable and co-Turing-recognizable, then \(A \) is decidable. Since \(A \) is Turing-recognizable, there is a TM \(M \) with \(L(M) = A \). Since \(A \) is co-Turing-recognizable, \(\overline{A} \) is Turing-recognizable, so there is a TM \(M' \) with \(L(M') = \overline{A} \). Any string \(w \in \Sigma^* \) is either in \(A \) or \(\overline{A} \) but not both, so either \(M \) or \(M' \) (but not both) must accept \(w \). Now build another TM \(D \) as follows:

\[
D = \text{"On input string } w:\n1. \text{ Run } M \text{ and } M' \text{ alternatively on } w \text{ step by step.}
2. \text{ If } M \text{ accepts } w, \text{ accept. If } M' \text{ accepts } w, \text{ reject.}\n\]

Then \(D \) decides \(A \), so \(A \) is decidable.

5. Define the language as

\[
E_{\text{NFA}} = \{ \langle N \rangle \mid N \text{ is an NFA with } L(N) = \emptyset \}.
\]

Recall that the proof of Theorem 4.4 defines a Turing machine \(R \) that decides the language \(E_{\text{DFA}} = \{ \langle B \rangle \mid B \text{ is a DFA with } L(B) = \emptyset \} \). Then the following Turing machine \(S \) decides \(E_{\text{NFA}} \):

\[
S = \text{"On input } \langle N \rangle \text{, where } N \text{ is an NFA:}\n1. \text{ Convert } N \text{ into an equivalent DFA } D
 \text{ using the algorithm in the proof of Kleene’s Theorem.}
2. \text{ Run TM } R \text{ for } E_{\text{DFA}} \text{ on input } \langle D \rangle.
3. \text{ If } R \text{ accepts, accept. If } R \text{ rejects, reject.}"
\]

6. This is Theorem 5.4. Recall that \(E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM with } L(M) = \emptyset \} \), which we know is undecidable by Theorem 5.2. We can reduce \(E_{\text{TM}} \) to \(E_{\text{EQ}}_{\text{TM}} \) as follows. Suppose that \(E_{\text{EQ}}_{\text{TM}} \) is decidable by a TM \(R \). Then we could decide \(E_{\text{TM}} \) using the following TM \(S \) with \(R \) as a subroutine:

\[
S = \text{"On input } \langle M \rangle \text{, where } M \text{ is a TM:}\n1. \text{ Run } R \text{ on input } \langle M, M_{\emptyset} \rangle,
 \text{ where } M_{\emptyset} \text{ is a TM such that } L(M_{\emptyset}) = \emptyset.
2. \text{ If } R \text{ accepts, accept; if } R \text{ rejects, reject.}\n\]

The TM \(S \) just checks if the inputted TM \(M \) is equivalent to the empty TM \(M_{\emptyset} \), so \(S \) decides \(E_{\text{TM}} \). But \(E_{\text{TM}} \) is undecidable, so that must mean the decider \(R \) for \(E_{\text{EQ}}_{\text{TM}} \) cannot exist, so \(E_{\text{EQ}}_{\text{TM}} \) is undecidable.
A mistake that some students made is the following. Define the following TM R_0 to try to decide EQ_{TM}:

$$R_0 = \text{“On input } \langle M, N \rangle, \text{ where } M \text{ and } N \text{ are TMs:}$$

1. For a string w, run M and N on w.
2. If M and N both accept or both don’t, then M and N are equivalent, so accept; otherwise, reject.

There are several problems with this approach. First, in stage 1 what is the string w on which to test the TMs M and N? For M and N to be equivalent, R would have to test every possible string $w \in \Sigma^*$, and make sure that M and N both accept or both don’t accept. Hence, on a YES instance (i.e., when M and N are equivalent), the TM R_0 would be stuck in an infinite loop since there are infinitely many strings $w \in \Sigma^*$ to test, and M and N would agree on all of them when M and N are equivalent. In other words, R_0 loops on $\langle M, N \rangle \in EQ_{TM}$, so R_0 doesn’t even recognize EQ_{TM}.

Another problem is that in stage 1 of R_0, it may not be safe to run M and N on w since one or both might loop, in which case R_0 can’t be a decider since it doesn’t always halt. Moreover, there is no way to determine if M or N accept w since the acceptance problem for TMs (i.e., A_{TM}) is undecidable. You might think that this then proves that EQ_{TM} is undecidable, but this only shows that one particular way (i.e., TM R_0) does not decide EQ_{TM}, but there might be another TM that does decide EQ_{TM}. To prove that EQ_{TM} is undecidable, you need to show that every TM will fail to decide EQ_{TM}, and this is accomplished via a reduction, as in the solution. If there were a decider R for EQ_{TM}, then we could use R to construct a decider S for E_{TM}. But since E_{TM} is undecidable (Theorem 5.2), it must be the case that EQ_{TM} does not have a decider, i.e., EQ_{TM} is undecidable.