
CS 341, Fall 2013

Solutions for Midterm 2

1. (a) True, since every regular language is context-free, every context-free language
is decidable, and every decidable language is Turing-recognizable.

(b) False, by Theorem 4.11.

(c) False, by Corollary 4.23.

(d) False. Can decide this by the following TM:
M = “On input 〈N,R〉, where N is an NFA and R is a regular expression:
1. Check if 〈N,R〉 is a proper encoding of NFA N and regular expression R;
if not, reject.
2. Convert N into equivalent DFA D1 using algorithm in Theorem 1.39.
3. Convert R into equivalent DFA D2 using algorithms in Lemma 1.55 and
Theorem 1.39.
4. Run TM S for EQDFA on input 〈D1, D2〉. If S accepts, then accept ; else,
reject.”

(e) True, by Theorem 4.5.

(f) False, by Theorem 3.13.

(g) False, by Corollary 3.15.

(h) False, e.g., the set of positive integers is infinite and countable.

(i) False, e.g., if A = {00, 11, 111} and B = {00, 11}, then A∩B = ∅ but A 6= B.
For A and B to be equal, we instead need (A ∩B) ∪ (A ∩ B) = ∅.

(j) False. TM M may loop on input w.

2. (a) No, because f(x) = f(y) = 1.

(b) No, because nothing in A maps to 3 ∈ B.

(c) No, because f is not one-to-one nor onto.

(d) A language L1 that is Turing-recognizable has a Turing machine M1 that may
loop forever on a string w 6∈ L1. A language L2 that is Turing-decidable has
a Turing machine M2 that always halts.

(e) An algorithm is a Turing machine that always halts.

3. (a) q1010#1 xq210#1 x1q20#1 x10q2#1 x10#q41 x10#1qreject

(b) q11#1 xq3#1 x#q51 xq6#x q7x#x xq1#x x#q8x x#xq8
x#xxyqaccept

4. This is Theorem 4.22. First we show that if A is decidable then it is both Turing-
recognizable and co-Turing recognizable. Suppose that A is decidable. Then it
must also be Turing-recognizable. Also, since A is decidable, there is a TM M

that decides A. Now define another TM M ′ to be the same as M except that we
swap the accept and reject states. Then M ′ decides A, so A is decidable. Hence, A
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is also Turing-recognizable, so A is co-Turing-recognizable. Thus, we proved that
A is both Turing-recognizable and co-Turing-recognizable.

Now we prove the converse: if A is both Turing-recognizable and co-Turing-
recognizable, then A is decidable. Since A is Turing-recognizable, there is a TM
M with L(M) = A. Since A is co-Turing-recognizable, A is Turing-recognizable,
so there is a TM M ′ with L(M ′) = A. Any string w ∈ Σ∗ is either in A or A but
not both, so either M or M ′ (but not both) must accept w. Now build another
TM D as follows:

D = “On input string w:

1. Run M and M ′ alternatively on w step by step.

2. If M accepts w, accept. If M ′ accepts w, reject.

Then D decides A, so A is decidable.

5. Define the language as

ENFA = { 〈N〉 | N is an NFA with L(N) = ∅ }.

Recall that the proof of Theorem 4.4 defines a Turing machine R that decides the
language EDFA = { 〈B〉 | B is a DFA with L(B) = ∅ }. Then the following Turing
machine S decides ENFA:

S = “On input 〈N〉, where N is an NFA:

1. Convert N into an equivalent DFA D

using the algorithm in the proof of Kleene’s Theorem.

2. Run TM R for EDFA on input 〈D〉.

3. If R accepts, accept. If R rejects, reject.”

6. This is Theorem 5.4. Recall that ETM = { 〈M〉 | M is a TM with L(M) = ∅ },
which we know is undecidable by Theorem 5.2. We can reduce ETM to EQTM as
follows. Suppose that EQTM is decidable by a TM R. Then we could decide ETM

using the following TM S with R as a subroutine:

S = “On input 〈M〉, where M is a TM:

1. Run R on input 〈M,M∅〉,

where M∅ is a TM such that L(M∅) = ∅.

2. If R accepts, accept ; if R rejects, reject.

The TM S just checks if the inputted TM M is equivalent to the empty TM M∅,
so S decides ETM. But ETM is undecidable, so that must mean the decider R for
EQTM cannot exist, so EQTM is undecidable.
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A mistake that some students made is the following. Define the following TM R0

to try to decide EQTM:

R0 = “On input 〈M,N〉, where M and N are TMs:

1. For a string w, run M and N on w.

2. If M and N both accept or both don’t,

then M and N are equivalent, so accept ; otherwise, reject.

There are several problems with this approach. First, in stage 1 what is the string
w on which to test the TMs M and N? For M and N to be equivalent, R would
have to test every possible string w ∈ Σ∗, and make sure that M and N both
accept or both don’t accept. Hence, on a YES instance (i.e., when M and N are
equivalent), the TM R0 would be stuck in an infinite loop since there are infinitely
many strings w ∈ Σ∗ to test, and M and N would agree on all of them when M

and N are equivalent. In other words, R0 loops on 〈M,N〉 ∈ EQTM, so R0 doesn’t
even recognize EQTM.

Another problem is that in stage 1 of R0, it may not be safe to run M and N on w

since one or both might loop, in which case R0 can’t be a decider since it doesn’t
always halt. Moreover, there is no way to determine if M or N accept w since the
acceptance problem for TMs (i.e., ATM) is undecidable. You might think that this
then proves that EQTM is undecidable, but this only shows that one particular
way (i.e., TM R0) does not decide EQTM, but there might be another TM that
does decide EQTM. To prove that EQTM is undecidable, you need to show that
every TM will fail to decide EQTM, and this is accomplished via a reduction, as in
the solution. If there were a decider R for EQTM, then we could use R to construct
a decider S for ETM. But since ETM is undecidable (Theorem 5.2), it must be the
case that EQTM does not have a decider, i.e., EQTM is undecidable.
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