CS 341, Spring 2013 Solutions for Midterm 2

- 1. (a) True, since the definition of Turing-decidable is more restrictive than the definition of Turing-recognizable.
 - (b) True, by Theorem 3.13.
 - (c) True, by slide 4-25.
 - (d) False, e.g., if $A = \{00, 11\}$ and $B = \{00, 11, 111\}$, then $A \cap \overline{B} = \emptyset$ but $A \neq B$. For A and B to be equal, we instead need $(\overline{A} \cap B) \cup (A \cap \overline{B}) = \emptyset$.
 - (e) False, since the set $\mathcal{N} = \{1, 2, 3, \ldots\}$ is countable.
 - (f) True, since every regular language is context-free by Corollary 2.32, and every context-free language is decidable by Theorem 4.9.
 - (g) True. This is just the definition of co-Turing-recognizable.
 - (h) False, by Theorem 3.16.
 - (i) False. A TM M may loop on input w.
 - (j) False. $\overline{A_{\rm TM}}$ is not Turing-recognizable by Corollary 4.23.
- 2. (a) Yes, because each element in A maps to a different element in B.
 - (b) No, because there is no element in A that maps to $4 \in B$.
 - (c) No, because f is not onto.
 - (d) An algorithm is a Turing machine that always halts.
 - (e) A language L_1 that is Turing-recognizable has a Turing machine M_1 such that M_1 accepts each $w \in L_1$, and M_1 loops or rejects every $w \notin L_1$. A language L_2 that is Turing-decidable has a Turing machine M_2 such that M_2 accepts each $w \in L_2$, and M_2 rejects every $w \notin L_2$; i.e., M_2 never loops.
- 3. (a) $q_1 110 \# 01$ $xq_3 10 \# 01$ $x1q_3 0 \# 01$ $x10q_3 \# 01$ $x10 \# q_5 01$ $x10 \# 0q_{\text{reject}} 1$
 - (b) $q_1 0 \# 0 \quad x q_2 \# 0 \quad x \# q_4 0 \quad x q_6 \# x \quad q_7 x \# x \quad x q_1 \# x \quad x \# q_8 x \quad x \# x \ x$
- 4. This is Theorem 4.22. First we show that if A is decidable then it is both Turing-recognizable and co-Turing recognizable. Suppose that A is decidable. Then it must also be Turing-recognizable. Also, since A is decidable, there is a TM M that decides A. Now define another TM M' to be the same as M except that we swap the accept and reject states. Then M' decides A, so A is decidable. Hence, A is also Turing-recognizable, so A is co-Turing-recognizable. Thus, we proved that A is both Turing-recognizable and co-Turing-recognizable.

Now we prove the converse: if A is both Turing-recognizable and co-Turing-recognizable, then A is decidable. Since A is Turing-recognizable, there is a TM M with L(M) = A. Since A is co-Turing-recognizable, \overline{A} is Turing-recognizable,

so there is a TM M' with $L(M') = \overline{A}$. Any string $w \in \Sigma^*$ is either in A or \overline{A} but not both, so either M or M' (but not both) must accept w. Now build another TM D as follows:

D = "On input string w:

- **1.** Run M and M' alternatively on w step by step.
- **2.** If M accepts w, accept. If M' accepts w, reject.

Then D decides A, so A is decidable.

5. Define the language as

 $C = \{ \langle N, R \rangle \mid N \text{ is an NFA and } R \text{ is a regular expression with } L(N) = L(R) \}.$

Recall that the proof of Theorem 4.5 defines a Turing machine F that decides the language $EQ_{\text{DFA}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$. Then the following Turing machine T decides C:

- T = "On input $\langle N, R \rangle$, where N is an NFA and R is a regular expression:
 - 1. Convert N into an equivalent DFA D using the algorithm in the proof of Kleene's Theorem.
 - 2. Convert R into an equivalent DFA D' using the algorithm in the proof of Kleene's Theorem.
 - **3.** Run TM F from Theorem 4.5 on input $\langle D, D' \rangle$.
 - 4. If F accepts, accept. If F rejects, reject."
- 6. This is Theorem 5.4. Recall that $E_{\rm TM} = \{\langle M \rangle \mid M \text{ is a TM with } L(M) = \emptyset\}$, which we know is undecidable by Theorem 5.2. We can reduce $E_{\rm TM}$ to $EQ_{\rm TM}$ as follows. Suppose that $EQ_{\rm TM}$ is decidable by a TM R. Then we could decide $E_{\rm TM}$ using the following TM S with R as a subroutine:

S = "On input $\langle M \rangle$, where M is a TM:

- 1. Run R on input $\langle M, M_{\emptyset} \rangle$, where M_{\emptyset} is a TM such that $L(M_{\emptyset}) = \emptyset$.
 - **2.** If *R* accepts, *accept*; if *R* rejects, *reject*.

The TM S just checks if the inputted TM M is equivalent to the empty TM M_{\emptyset} , so S decides E_{TM} . But E_{TM} is undecidable, so that must mean the decider R for EQ_{TM} cannot exist, so EQ_{TM} is undecidable.

A mistake that some students made is the following. Define the following TM R_0 to try to decide EQ_{TM} :

- $R_0 =$ "On input $\langle M, N \rangle$, where M and N are TMs:
 - **1.** For a string w, run M and N on w.
 - **2.** If M and N both accept or both don't,

then M and N are equivalent, so *accept*; otherwise, *reject*.

There are several problems with this approach. First, in stage 1 what is the string w on which to test the TMs M and N? For M and N to be equivalent, R would have to test every possible string $w \in \Sigma^*$, and make sure that M and N both accept or both don't accept. Hence, on a YES instance (i.e., when M and N are equivalent), the TM R_0 would be stuck in an infinite loop since there are infinitely many strings $w \in \Sigma^*$ to test, and M and N would agree on all of them when M and N are equivalent. In other words, R_0 loops on $\langle M, N \rangle \in EQ_{\rm TM}$, so R_0 doesn't even recognize $EQ_{\rm TM}$.

Another problem is that in stage 1 of R_0 , it may not be safe to run M and N on w since one or both might loop, in which case R_0 can't be a decider since it doesn't always halt. Moreover, there is no way to determine if M or N accept w since the acceptance problem for TMs (i.e., $A_{\rm TM}$) is undecidable. You might think that this then proves that $EQ_{\rm TM}$ is undecidable, but this only shows that one particular way (i.e., TM R_0) does not decide $EQ_{\rm TM}$, but there might be another TM that does decide $EQ_{\rm TM}$. To prove that $EQ_{\rm TM}$ is undecidable, you need to show that every TM will fail to decide $EQ_{\rm TM}$, and this is accomplished via a reduction, as in the solution. If there were a decider R for $EQ_{\rm TM}$, then we could use R to construct a decider S for $E_{\rm TM}$. But since $E_{\rm TM}$ is undecidable (Theorem 5.2), it must be the case that $EQ_{\rm TM}$ does not have a decider, i.e., $EQ_{\rm TM}$ is undecidable.