## CS 341, Fall 2014 Solutions for Midterm, eLearning Section

- 1. (a) True. Theorem 2.20.
  - (b) True. If A is finite, then it must be regular (slide 1-95).
  - (c) False.  $\{0,1\}^*$  is a regular language that is infinite.
  - (d) True, by Kleene's Theorem.
  - (e) False.  $0^*1^*$  generates  $00111 \notin \{0^n1^n \mid n \ge 0\}$ .
  - (f) False.  $A \times B$  contains pairs of strings, whereas  $A \circ B$  contains just strings.
  - (g) True. Homework 2, problem 3.
  - (h) False.  $A = \{0^n 1^n \mid n \ge 0\}$  is a context-free language, but it is nonregular. Hence, A cannot have an NFA.
  - (i) True. Homework 5, problem 3(b).
  - (j) True. Homework 5, problem 3(a).
- 2. (a) A regular expression for  $L_1$  is

$$R_1 = (+ \cup - \cup \varepsilon) \Sigma_1 \Sigma_1^*$$

where  $\Sigma_1 = \{0, 1, 2, \dots, 9\}$  as defined in the problem.

(b) An NFA for  $L_1$  is



(c) Define  $\Sigma_2 = \{-, +\}$ , as given in the problem. Then a DFA for  $L_1$  is



(d) A regular expression for  $L_2$  is

$$R_2 = (+ \cup - \cup \varepsilon)(\Sigma_1 \Sigma_1^* \cdot \Sigma_1^* \cup \cdot \Sigma_1 \Sigma_1^*)$$

Note that the regular expression  $(+ \cup - \cup \varepsilon) \Sigma_1^* \cdot \Sigma_1^*$  is not correct since it can generate the strings ".", "+." and "-.", which are not valid floating-point numbers.

(e) An NFA for  $L_2$  is



(f) Note that  $L = L_1 \cup L_2$ , so a regular expression for L is

$$R_3 = R_1 \cup R_2$$

(g) We can construct an NFA for L by taking the union of the NFA's for  $L_1$  and  $L_2$  as follows:



There are many other correct answers for this and the other parts.

- 3. (a)  $q_1bb \sqcup q_2b \sqcup xq_3 \sqcup \sqcup q_5x q_5 \sqcup x \sqcup q_2x \sqcup xq_2 \sqcup \sqcup x \sqcup q_{\text{accept}}$ 
  - (b)  $q_1bbbbb \sqcup q_2bbbb \sqcup xq_3bbb \sqcup xbq_4bb \sqcup xbxq_3b \sqcup xbxbq_4$  $\sqcup xbxb \sqcup q_{reject}$
- 4. (a) CFG  $G = (V, \Sigma, R, S)$ , with  $V = \{S, X, Y\}$  and start variable  $S, \Sigma = \{a, b, c\}$ , and rules R:

$$S \to XY$$
$$X \to aXb \mid \varepsilon$$
$$Y \to cY \mid \varepsilon$$

(b) PDA



There are other correct PDAs that recognize A.

5. This is Homework 6, problem 2a. Define languages

$$A = \{ a^{m}b^{n}c^{n} \mid m, n \ge 0 \} \text{ and} B = \{ a^{n}b^{n}c^{m} \mid m, n \ge 0 \}.$$

The language A is context free since it has CFG  $G_1$  with rules

$$\begin{array}{rcl} S & \rightarrow & XY \\ X & \rightarrow & aX \mid \varepsilon \\ Y & \rightarrow & bYc \mid \varepsilon \end{array}$$

The language B is context free since it has CFG  $G_2$  with rules

$$\begin{array}{rcl} S & \rightarrow & XY \\ X & \rightarrow & aXb \mid \varepsilon \\ Y & \rightarrow & cY \mid \varepsilon \end{array}$$

But  $A \cap B = \{ a^n b^n c^n \mid n \ge 0 \}$ , which we know is not context free from Example 2.36 of the textbook. Thus, the class of context-free languages is not closed under intersection.

6. Suppose that A is a regular language. Let p be the pumping length, and consider the string  $s = a^p b^p \in A$ . Note that  $|s| = 2p \ge p$ , so the pumping lemma implies we can write s = xyz with  $xy^i z \in A$  for all  $i \ge 0$ , |y| > 0, and  $|xy| \le p$ . Now,  $|xy| \le p$  implies that x and y have only a's (together up to p in total) and z has the rest of the a's at the beginning, followed by  $b^p$ . Hence, we can write  $x = a^j$  for some  $j \ge 0$ ,  $y = a^k$  for some  $k \ge 0$ , and  $z = a^{\ell}b^p$ , where  $j + k + \ell = p$  since  $xyz = s = a^pb^p$ . Also, |y| > 0 implies k > 0. Now consider the string  $xyyz = a^j a^k a^k a^\ell b^p = a^{p+k} b^p$  since  $j + k + \ell = p$ . Note that  $xyyz \notin A$  since k > 0 so the number of a's and b's are not equal. This contradicts (i), so A is not a regular language.