CS 341, Fall 2014

Solutions for Midterm, eLearning Section

1. (a) True. Theorem 2.20.
(b) True. If A is finite, then it must be regular (slide 1-95).
(c) False. $\{0,1\}^{*}$ is a regular language that is infinite.
(d) True, by Kleene's Theorem.
(e) False. $0^{*} 1^{*}$ generates $00111 \notin\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.
(f) False. $A \times B$ contains pairs of strings, whereas $A \circ B$ contains just strings.
(g) True. Homework 2, problem 3.
(h) False. $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is a context-free language, but it is nonregular. Hence, A cannot have an NFA.
(i) True. Homework 5, problem 3(b).
(j) True. Homework 5, problem 3(a).
2. (a) A regular expression for L_{1} is

$$
R_{1}=(+\cup-\cup \varepsilon) \Sigma_{1} \Sigma_{1}^{*}
$$

where $\Sigma_{1}=\{0,1,2, \ldots, 9\}$ as defined in the problem.
(b) An NFA for L_{1} is

(c) Define $\Sigma_{2}=\{-,+\}$, as given in the problem. Then a DFA for L_{1} is

(d) A regular expression for L_{2} is

$$
R_{2}=(+\cup-\cup \varepsilon)\left(\Sigma_{1} \Sigma_{1}^{*} \cdot \Sigma_{1}^{*} \cup . \Sigma_{1} \Sigma_{1}^{*}\right)
$$

Note that the regular expression $(+\cup-\cup \varepsilon) \Sigma_{1}^{*} . \Sigma_{1}^{*}$ is not correct since it can generate the strings ".", "+." and "-.", which are not valid floating-point numbers.
(e) An NFA for L_{2} is

(f) Note that $L=L_{1} \cup L_{2}$, so a regular expression for L is

$$
R_{3}=R_{1} \cup R_{2}
$$

(g) We can construct an NFA for L by taking the union of the NFA's for L_{1} and L_{2} as follows:

There are many other correct answers for this and the other parts.
3. (a) $q_{1} b b \quad \sqcup q_{2} b \quad \sqcup x q_{3} \sqcup \quad \sqcup q_{5} x \quad q_{5} \sqcup x \quad \sqcup q_{2} x \quad \sqcup x q_{2} \sqcup \quad \sqcup x \sqcup q_{\text {accept }}$
(b) $q_{1} b b b b b \quad \sqcup q_{2} b b b b \quad \sqcup x q_{3} b b b \quad \sqcup x b q_{4} b b \quad \sqcup x b x q_{3} b \quad \sqcup x b x b q_{4}$ $\sqcup x b x b \sqcup q_{\text {reject }}$
4. (a) CFG $G=(V, \Sigma, R, S)$, with $V=\{S, X, Y\}$ and start variable $S, \Sigma=\{a, b, c\}$, and rules R :

$$
\begin{aligned}
& S \rightarrow X Y \\
& X \rightarrow a X b \mid \varepsilon \\
& Y \rightarrow c Y \mid \varepsilon
\end{aligned}
$$

(b) PDA

There are other correct PDAs that recognize A.
5. This is Homework 6, problem 2a. Define languages

$$
\begin{aligned}
& A=\left\{a^{m} b^{n} c^{n} \mid m, n \geq 0\right\} \text { and } \\
& B=\left\{a^{n} b^{n} c^{m} \mid m, n \geq 0\right\}
\end{aligned}
$$

The language A is context free since it has CFG G_{1} with rules

$$
\begin{aligned}
S & \rightarrow X Y \\
X & \rightarrow a X \mid \varepsilon \\
Y & \rightarrow b Y c \mid \varepsilon
\end{aligned}
$$

The language B is context free since it has CFG G_{2} with rules

$$
\begin{aligned}
S & \rightarrow X Y \\
X & \rightarrow a X b \mid \varepsilon \\
Y & \rightarrow c Y \mid \varepsilon
\end{aligned}
$$

But $A \cap B=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$, which we know is not context free from Example 2.36 of the textbook. Thus, the class of context-free languages is not closed under intersection.
6. Suppose that A is a regular language. Let p be the pumping length, and consider the string $s=a^{p} b^{p} \in A$. Note that $|s|=2 p \geq p$, so the pumping lemma implies we can write $s=x y z$ with $x y^{i} z \in A$ for all $i \geq 0,|y|>0$, and $|x y| \leq p$. Now, $|x y| \leq p$ implies that x and y have only a 's (together up to p in total) and z has the rest of the a 's at the beginning, followed by b^{p}. Hence, we can write $x=a^{j}$ for some $j \geq 0, y=a^{k}$ for some $k \geq 0$, and $z=a^{\ell} b^{p}$, where $j+k+\ell=p$ since $x y z=s=a^{p} b^{p}$. Also, $|y|>0$ implies $k>0$. Now consider the string $x y y z=a^{j} a^{k} a^{k} a^{\ell} b^{p}=a^{p+k} b^{p}$ since $j+k+\ell=p$. Note that xyyz $\notin A$ since $k>0$ so the number of a 's and b 's are not equal. This contradicts (i), so A is not a regular language.

