Midterm Exam
CS 341-451: Foundations of Computer Science II - Fall 2014, eLearning section Prof. Marvin K. Nakayama

Print family (or last) name: \qquad

Print given (or first) name: \qquad

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

Signature and Date

- This exam has 10 pages in total, numbered 1 to 10 . Make sure your exam has all the pages.
- Unless other prior arrangements have been made with the professor, the exam is to last 2.5 hours and is to be given on Saturday, October 18, 2014, 9:30am-12:00pm.
- This is a closed-book, closed-note exam. No electronic devices (e.g., calculators, cellphones) are allowed.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratch-work area or the backs of the sheets to work out your answers before filling in the answer space.
2. DFA stands for deterministic finite automaton; NFA stands for nondeterministic finite automaton; CFG stands for context-free grammar; PDA stands for pushdown automaton. TM stands for Turing machine.
3. For any proofs, be sure to provide a step-by-step argument, with justifications for every step. If you are asked to prove a result X, in your proof of X, you may use any other result Y without proving Y. However, make it clear what the other result Y is that you are using; e.g., write something like, "By the result that $A^{* *}=A^{*}$, we know that"

Problem	1	2	3	4	5	6	Total
Points							

1. [20 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - A language L has a CFG if and only if L is recognized by a PDA.
(b) TRUE FALSE - If a language A is not regular, then it must be infinite.
(c) TRUE FALSE - If a language is infinite, then it must not be regular.
(d) TRUE FALSE - If A is a regular language, then A has a regular expression.
(e) TRUE FALSE - A regular expression for the language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is $0^{*} 1^{*}$.
(f) TRUE FALSE - If $A=\{01,1\}$ and $B=\{\varepsilon\}$, then $A \times B=A \circ B$.
(g) TRUE FALSE - The class of regular languages is closed under complementation.
(h) TRUE FALSE - If A is a context-free language, then A is recognized by an NFA.
(i) TRUE FALSE - If A and B are context-free languages, then so is $A \circ B$.
(j) TRUE FALSE - If A and B are context-free languages, then so is $A \cup B$.
2. [30 points] Define L to be the set of strings that represent numbers in a modified version of Java. The goal in this problem is to define a regular expression and an NFA for L. To precisely define L, let $\Sigma=\Sigma_{1} \cup \Sigma_{2} \cup\{$.$\} , where \Sigma_{1}=\{0,1,2, \ldots, 9\}$ is the set of digits and $\Sigma_{2}=\{+,-\}$ is the set of signs. Then $L=L_{1} \cup L_{2}$, where

- L_{1} is the set of all strings that are decimal integer numbers. Specifically, L_{1} consists of strings that start with an optional sign, followed by one or more digits. Examples of strings in L_{1} are " 02 ", " +9 ", and " -241 ".
- L_{2} is the set of all strings that are floating-point numbers that are not in exponential notation. Specifically, L_{2} consists of strings that start with an optional sign, followed by zero or more digits, followed by a decimal point, and end with zero or more digits, where there must be at least one digit in the string. Examples of strings in L_{2} are "13.231", "-28." and ".124". All strings in L_{2} have exactly one decimal point.

Assume that there is no limit on the number of digits in a string in L. Also, we do not allow exponential notation, nor do we allow for the suffixes L, l, F, f, D, d, at the end of numbers to denote types (long integers, floats, and doubles); these symbols are not in Σ anyways.
(a) Give a regular expression for L_{1}.
(b) Give an NFA for L_{1} over the alphabet Σ.
(c) Give a DFA for L_{1} over the alphabet Σ. Your DFA must include all transitions.
(d) Give a regular expression for L_{2}.
(e) Give an NFA for L_{2} over the alphabet Σ.
(f) Give a regular expression for L.
(g) Give an NFA for L over the alphabet Σ.
3. [10 points] The Turing machine M below has input alphabet $\Sigma=\{b\}$ and tape alphabet $\Gamma=\{b, x, \sqcup\}$.

In each of the parts below, give the sequence of configurations that M enters when started on the indicated input string.
(a) $b b$
(b) $b b b b b$

Scratch-work area

4. [20 points] Let $\Sigma=\{a, b, c\}$, and consider the language $A=\left\{a^{n} b^{n} c^{k} \mid n, k \geq 0\right\}$.
(a) Give a CFG G for A. Be sure to specify G as a 4 -tuple $G=(V, \Sigma, R, S)$.
(b) Give a PDA for A. You only need to give the drawing.

Scratch-work area

5. [10 points] Give an example of context-free languages A and B such that $C=A \cap B$ is not context-free. Explain your answer. Be sure to give CFGs for A and B. You do not have to prove that C is non-context-free for your example, but C must be a non-context-free language that we went over in the course.
6. [10 points] Recall the pumping lemma for regular languages:

Theorem: If L is a regular language, then there is a number p (pumping length) where, if $s \in L$ with $|s| \geq p$, then s can be split into 3 pieces, $s=x y z$, satisfying conditions
(i) $x y^{i} z \in L$ for each $i \geq 0$,
(ii) $|y|>0$, and
(iii) $|x y| \leq p$.

Let $\Sigma=\{a, b, c\}$, and consider the language $A=\left\{a^{n} b^{n} c^{k} \mid n, k \geq 0\right\}$. Prove that A is not a regular language.

