CS 341, Fall 2014, Face-to-Face Section Solutions for Midterm 1

1. (a) True, by Theorem 1.49 .
(b) True. If A_{1} and A_{2} are regular, then $A_{1} \circ A_{2}$ is regular by Theorem 1.47. Corollary 2.32 then implies that $A_{1} \circ A_{2}$ is context-free.
(c) False. If A has an NFA, then it is regular by Corollary 1.40.
(d) True.
(e) True. If A has a regular expression, then A is a regular language by Kleene's Theorem. Corollary 2.32 implies that A is CFL, so A has a CFG by definition.
(f) False. The language $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ has a PDA (see slide 2-50), but is not regular (slide 1-90), so A cannot have a DFA.
(g) False. The language $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ has a PDA (see slide 2-54), but is not regular (slide 1-105), so A cannot have a DFA. Thus, by Theorem 1.40, A cannot have an NFA either.
(h) False. Homework 6, problem 2(a).
(i) False. Homework 6, problem 2(b).
(j) False. Every CFL has a CFG in Chomsky normal form by Theorem 2.9. But not every CFL is regular, e.g., $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.
2. (a) $b^{*} a b^{*} \cup b^{*} a a^{*} b b^{*}$. Another regular expression is $b^{*}\left(a \cup a a^{*} b\right) b^{*}$. There are infinitely many regular expressions for the language.
(b) $G^{\prime}=\left(V^{\prime}, \Sigma, R^{\prime}, S_{0}\right)$, where $V^{\prime}=V \cup\left\{S_{0}\right\}, S_{0}$ is the (new) starting variable, Σ is the same alphabet of terminals as in G, and $R^{\prime}=R \cup\left\{S_{0} \rightarrow S S_{0} \mid \varepsilon\right\}$.
(c) $M_{3}=\left(Q_{3}, \Sigma, \delta_{3}, q_{3}, F_{3}\right)$, where $Q_{3}=Q_{1} \times Q_{2} ; \Sigma$ is the same alphabet as M_{1} and M_{2} have; the transition function δ_{2} satisfies $\delta((q, r), \ell)=\left(\delta_{1}(q, \ell), \delta_{2}(r, \ell)\right)$ for $(q, r) \in Q_{3}$ and $\ell \in \Sigma$; the starting state $q_{3}=\left(q_{1}, q_{2}\right)$; and $F_{3}=\left(Q_{1} \times F_{2}\right) \cap\left(F_{1} \times\right.$ Q_{2}), which also can be written as $F_{1} \times F_{2}$.
(d) After one step, the CFG is then

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow A 1 S A|1 S A| A 1 S|1 S| A 0|0| \varepsilon \\
A & \rightarrow 0 S 0
\end{aligned}
$$

3. A DFA for C is below:

4. (a) $G=(V, \Sigma, R, S)$ with set of variables $V=\{S, Z\}$, where S is the start variable; set of terminals $\Sigma=\{a, b\}$; and rules

$$
\begin{aligned}
& S \rightarrow b S a \mid Z \\
& Z \rightarrow b Z \mid \varepsilon
\end{aligned}
$$

There are infinitely many other correct CFGs for L.
(b) There are infinitely many correct PDAs for L. The below PDA guesses how many b 's not to match to the a 's (state q_{2}), then pushes the b 's to match with the a 's (state q_{3}), matches the a 's with the pushed b 's (state q_{4}), and finally checks that the stack is empty (transition from q_{4} to q_{5}).

Below is another PDA for L, which first pushes b 's to match the a 's (state q_{2}), then guesses how many b 's not to match with a 's (state q_{3}), matches the a 's with the pushed b 's (state q_{4}), and finally checks that the stack is empty (transition from q_{4} to q_{5}).

Below is yet another PDA for L. This one pushes all of the b 's onto the stack (state q_{2}), and matches the a 's with some of the pushed b 's (state q_{3}). This PDA can accept a string with symbols (b 's and $\$$) still on the stack.

Yet another approach uses the algorithm from Lemma 2.21 to convert the CFG in part (a) into a PDA.

5. Language A is nonregular. We prove this by contradiction. Suppose that A is a regular language. Let p be the "pumping length" of the Pumping Lemma. Consider the string $s=b^{p} a^{p}$. Note that $s \in A$, and $|s|=2 p>p$, so the Pumping Lemma will hold. Thus, there exists strings x, y, and z such that $s=x y z$ and
(a) $x y^{i} z \in A$ for each $i \geq 0$,
(b) $|y|>0$,
(c) $|x y| \leq p$.

Since the first p symbols of s are all b 's, the third property implies that x and y consist only of b 's. So z will be the rest of the b 's, followed by a^{p}. The second property states that $|y|>0$, so y has at least one b. More precisely, we can then say that

$$
\begin{aligned}
& x=b^{j} \text { for some } j \geq 0 \\
& y=b^{k} \text { for some } k \geq 1 \\
& z=b^{m} a^{p} \text { for some } m \geq 0
\end{aligned}
$$

Since $b^{p} a^{p}=s=x y z=b^{j} b^{k} b^{m} a^{p}=b^{j+k+m} a^{p}$, we must have that

$$
j+k+m=p \quad \text { and } \quad k \geq 1
$$

The first property implies that $x y^{0} z=x z \in A$, but

$$
\begin{aligned}
x z & =b^{j} b^{m} a^{p} \\
& =b^{j+m} a^{p} \notin A
\end{aligned}
$$

since $j+m<p$ because $j+k+m=p$ and $k \geq 1$, so the number of b 's in s is less than the number of a 's. This is a contradiction. Therefore, A is a nonregular language.

