Midterm Exam 1
CS 341: Foundations of Computer Science II - Fall 2014, day section
Prof. Marvin K. Nakayama

Print family (or last) name: \qquad

Print given (or first) name: \qquad

I have read and understand all of the instructions below, and I will obey the NJIT Code of Academic Codd Integrity.

Signature and Date

- This exam has 7 pages in total, numbered 1 to 7 . Make sure your exam has all the pages.
- Note the number written on the upper right-hand corner of the first page. On the sign-up sheet being passed around, sign your name next to this number.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratchwork area or the backs of the sheets to work out your answers before filling in the answer space.
2. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	5	Total
Points						

1. [20 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - If a language A is regular, then A^{*} must be regular.
(b) TRUE FALSE - If A_{1} and A_{2} are regular languages, then $A_{1} \circ A_{2}$ must be context-free.
(c) TRUE FALSE - If a language A has an NFA, then A is nonregular.
(d) TRUE FALSE - The regular expressions $(a \cup b)^{*}$ and $\left(b^{*} a^{*}\right)^{*}$ generate the same language.
(e) TRUE FALSE - If a language A has a regular expression, then it also has a context-free grammar.
(f) TRUE FALSE - If a language A is recognized by a PDA, then it also is recognized by a DFA.
(g) TRUE FALSE - If a language A is recognized by a PDA, then it also is recognized by an NFA.
(h) TRUE FALSE - The class of context-free languages is closed under intersection.
(i) TRUE FALSE - The class of context-free languages is closed under complementation.
(j) TRUE FALSE - If A is a language generated by a context-free grammar in Chomsky normal form, then A must be regular.
2. [20 points] Give short answers to each of the following parts. Be sure to define any notation that you use.
(a) Give a regular expression for the language recognized by the NFA below.

(b) Suppose A is generated by a context-free grammar $G=(V, \Sigma, R, S)$. Give a context-free grammar G^{\prime} for A^{*} in terms of G. You do not have to prove the correctness of your CFG G^{\prime}, but do not just give an example.
(c) Let $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ be a DFA with language A_{1}, and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ be a DFA with language A_{2}. Consider the language $A=A_{1} \cap A_{2}$. Give a DFA M_{3} for A in terms of M_{1} and M_{2}. Your DFA M_{3} must be completely general. Do not prove the correctness of your DFA M_{3}, but do not just give an example.
(d) Suppose that we are in the process of converting a CFG G with $\Sigma=\{0,1\}$ into Chomsky normal form. We have already applied some steps in the process, and we currently have the following CFG:

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow A 1 S A|A 0| \varepsilon \\
A & \rightarrow 0 S 0 \mid \varepsilon
\end{aligned}
$$

In the next step, we want to remove the ε-rule $A \rightarrow \varepsilon$. Give the CFG after carrying out just this one step.
3. [20 points] Let N be the following NFA with $\Sigma=\{a, b\}$, and let $C=L(N)$.

Give a DFA for C.

Scratch-work area

4. [25 points] Consider the alphabet $\Sigma=\{a, b\}$ and the language

$$
L=\left\{b^{i} a^{j} \mid i \geq j\right\}
$$

(a) Give a context-free grammar G for L. Be sure to specify G as a 4-tuple $G=(V, \Sigma, R, S)$.
(b) Give a PDA for L. You only need to draw the graph.

Scratch-work area

5. [15 points] Recall the pumping lemma for regular languages:

Theorem: If L is a regular language, then there exists a pumping length p where, if $s \in L$ with $|s| \geq p$, then s can be split into 3 pieces, $s=x y z$, with (i) $x y^{i} z \in L$ for each $i \geq 0$, (ii) $|y| \geq 1$, and (iii) $|x y| \leq p$.
Let $A=\left\{b^{i} a^{j} \mid i \geq j\right\}$. Is A a regular or nonregular language? If A is regular, give a regular expression for A. If A is not regular, prove that it is a nonregular language.

Circle one:
Regular Language
Nonregular Language

