CS 341, Fall 2014

Solutions for Midterm 2

1. (a) False, by Theorem 5.4.
(b) True, by Theorem 4.5.
(c) False, by Corollary 4.23.
(d) True, by Theorem 4.9.
(e) True, by Theorem 4.9.
(f) False, e.g., $\overline{A_{\mathrm{TM}}}$ is not Turing-recognizable.
(g) False. A TM M may loop on input w.
(h) True. List the strings in string order.
(i) False. Homework 9, problem 1.
(j) True, by Theorems 3.13 and 3.16.
2. (a) No, because $f(x)=f(z)=2$.
(b) Yes, because all elements in $B=\{1,2\}$ are hit: $f(y)=1$ and $f(x)=2$.
(c) No, because f is not one-to-one.
(d) A language L_{1} that is Turing-recognizable has a Turing machine M_{1} that may loop forever on a string $w \notin L_{1}$. A language L_{2} that is Turing-decidable has a Turing machine M_{2} that always halts.
(e) An algorithm is a Turing machine that always halts.
3. $q_{1} 0 \# 0 \quad x q_{2} \# 0 \quad x \# q_{4} 0 \quad x q_{6} \# x \quad q_{7} x \# x \quad x q_{1} \# x \quad x \# q_{8} x \quad x \# x q_{8}$ $x \# x \sqcup q_{\text {accept }}$
4. This is HW 7, problem 2a. For any two decidable languages L_{1} and L_{2}, let M_{1} and M_{2}, respectively be the TMs that decide them. We construct a TM M^{\prime} that decides the union of L_{1} and L_{2} :

$$
M^{\prime}=\text { "On input string } w:
$$

1. Run M_{1} on w. If it accepts, accept.
2. Run M_{2} on w. If it accepts, accept. Otherwise, reject.
M^{\prime} accepts w if either M_{1} or M_{2} accepts it. If both reject, M^{\prime} rejects.
3. This is a slight modification of HW 8, problem 3. Let $\Sigma=\{0,1\}$, and the language of the decision problem is
$A=\{\langle R\rangle \quad \mid \quad R$ is a regular expression describing a language over Σ containing at least one string w that has 010 as a substring

$$
\text { (i.e., } w=x 010 y \text { for some } x \text { and } y \text {) }\} \text {. }
$$

Define the language $C=\left\{w \in \Sigma^{*} \mid w\right.$ has 010 as a substring $\}$. Note that C is a regular language with regular expression $(0 \cup 1)^{*} 010(0 \cup 1)^{*}$ and is recognized by the following DFA D_{C} :

Now consider any regular expression R with alphabet Σ. If $L(R) \cap C \neq \emptyset$, then R generates a string having 010 as a substring, so $\langle R\rangle \in A$. Conversely, if $L(R) \cap C=$ \emptyset, then R does not generate any string having 010 as a substring, so $\langle R\rangle \notin A$. By Kleene's Theorem, since $L(R)$ is described by regular expression R, the language $L(R)$ must be a regular language. Since C and $L(R)$ are regular languages, $C \cap$ $L(R)$ is regular since the class of regular languages is closed under intersection, as was shown in Chapter 1. Thus, $C \cap L(R)$ has some DFA $D_{C \cap L(R)}$. Theorem 4.4 shows that $E_{\mathrm{DFA}}=\{\langle B\rangle \mid B$ is a DFA with $L(B)=\emptyset\}$ is decidable, so there is a Turing machine H that decides $E_{\text {DFA }}$. We apply TM H to $\left\langle D_{C \cap L(R)}\right\rangle$ to determine if $C \cap L(R)=\emptyset$. Putting this all together gives us the following Turing machine T to decide A :

$$
T=\text { "On input }\langle R\rangle \text {, where } R \text { is a regular expression: }
$$

1. Convert R into a DFA D_{R} using the algorithm in the proof of Kleene's Theorem.
2. Construct a DFA $D_{C \cap L(R)}$ for language $C \cap L(R)$ from the DFAs D_{C} and D_{R}.
3. Run TM H that decides $E_{\text {DFA }}$ on input $\left\langle D_{C \cap L(R)}\right\rangle$.
4. If H accepts, reject. If H rejects, accept."
5. This is Theorem 4.22. First we show that if A is decidable then it is both Turingrecognizable and co-Turing recognizable. Suppose that A is decidable. Then it must also be Turing-recognizable. Also, since A is decidable, there is a TM M that decides A. Now define another TM M^{\prime} to be the same as M except that we swap the accept and reject states. Then M^{\prime} decides \bar{A}, so \bar{A} is decidable. Hence, \bar{A} is also Turing-recognizable, so A is co-Turing recognizable. Thus, we proved that A is both Turing-recognizable and co-Turing-recognizable.
Now we prove the converse: if A is both Turing-recognizable and co-Turingrecognizable, then A is decidable. Since A is Turing-recognizable, there is a TM M with $L(M)=A$. Since A is co-Turing-recognizable, \bar{A} is Turing-recognizable, so there is a TM M^{\prime} with $L\left(M^{\prime}\right)=\bar{A}$. Any string $w \in \Sigma^{*}$ is either in A or \bar{A} but not both, so either M or M^{\prime} (but not both) must accept w. Now build another TM D as follows:

$$
D=" O n \text { input string } w:
$$

1. Run M and M^{\prime} alternatively on w step by step.
2. If M accepts w, accept. If M^{\prime} accepts w, reject.

Then D decides A, so A is decidable.
7. This is Theorem 5.1, whose proof is given on slide $5-8$. Suppose that $H A L T_{\mathrm{TM}}$ is decidable and that it is decided by a TM R. Define the following TM S, which will decide $A_{\text {TM }}$ using R as a subroutine:

$$
\begin{aligned}
& S=\text { "On input }\langle M, w\rangle \text {, where } M \text { is a TM and } w \text { is a string: } \\
& \text { 1. Run } R \text { on input }\langle M, w\rangle \text {. } \\
& \text { 2. If } R \text { rejects, then reject. } \\
& \text { 3. If } R \text { accepts, then run } M \text { on input } w \text { until it halts." } \\
& \text { 4. If } M \text { accepts } w \text {, accept; otherwise, reject." }
\end{aligned}
$$

Note that stage 1 checks if it is safe to run M on w. If not, then M loops on w, so S rejects $\langle M, w\rangle \notin A_{\mathrm{TM}}$, which is stage 2 . If stage 1 determines it is safe to run M on w, then stage 3 runs M on w, and then stage 4 gives the same output. In particular, if M accepts w, then S accepts $\langle M, w\rangle$; if M rejects w, then S rejects $\langle M, w\rangle$.
Thus, we have shown that A_{TM} reduces to $H A L T_{\mathrm{TM}}$. But since A_{TM} is undecidable, we must have that $H A L T_{\mathrm{TM}}$ is also undecidable.

