
CS 341, Fall 2014

Solutions for Midterm 2

1. (a) False, by Theorem 5.4.

(b) True, by Theorem 4.5.

(c) False, by Corollary 4.23.

(d) True, by Theorem 4.9.

(e) True, by Theorem 4.9.

(f) False, e.g., ATM is not Turing-recognizable.

(g) False. A TM M may loop on input w.

(h) True. List the strings in string order.

(i) False. Homework 9, problem 1.

(j) True, by Theorems 3.13 and 3.16.

2. (a) No, because f(x) = f(z) = 2.

(b) Yes, because all elements in B = {1, 2} are hit: f(y) = 1 and f(x) = 2.

(c) No, because f is not one-to-one.

(d) A language L1 that is Turing-recognizable has a Turing machine M1 that may
loop forever on a string w 6∈ L1. A language L2 that is Turing-decidable has
a Turing machine M2 that always halts.

(e) An algorithm is a Turing machine that always halts.

3. q10#0 xq2#0 x#q40 xq6#x q7x#x xq1#x x#q8x x#xq8
x#xxyqaccept

4. This is HW 7, problem 2a. For any two decidable languages L1 and L2, let M1

and M2, respectively be the TMs that decide them. We construct a TM M ′ that
decides the union of L1 and L2:

M ′ = “On input string w:

1. Run M1 on w. If it accepts, accept.

2. Run M2 on w. If it accepts, accept. Otherwise, reject.

M ′ accepts w if either M1 or M2 accepts it. If both reject, M ′ rejects.

5. This is a slight modification of HW 8, problem 3. Let Σ = {0, 1}, and the language
of the decision problem is

A = { 〈R〉 | R is a regular expression describing a language over Σ containing

at least one string w that has 010 as a substring

(i.e., w = x010y for some x and y) }.

1



Define the language C = {w ∈ Σ∗ | w has 010 as a substring }. Note that C is a
regular language with regular expression (0 ∪ 1)∗010(0 ∪ 1)∗ and is recognized by
the following DFA DC :

1 2 3 4

1

0

0

1

1

0

0, 1

Now consider any regular expression R with alphabet Σ. If L(R)∩C 6= ∅, then R

generates a string having 010 as a substring, so 〈R〉 ∈ A. Conversely, if L(R)∩C =
∅, then R does not generate any string having 010 as a substring, so 〈R〉 6∈ A. By
Kleene’s Theorem, since L(R) is described by regular expression R, the language
L(R) must be a regular language. Since C and L(R) are regular languages, C ∩
L(R) is regular since the class of regular languages is closed under intersection, as
was shown in Chapter 1. Thus, C ∩ L(R) has some DFA DC∩L(R). Theorem 4.4
shows that EDFA = { 〈B〉 | B is a DFA with L(B) = ∅ } is decidable, so there is a
Turing machine H that decides EDFA. We apply TM H to 〈DC∩L(R)〉 to determine
if C ∩ L(R) = ∅. Putting this all together gives us the following Turing machine
T to decide A:

T = “On input 〈R〉, where R is a regular expression:

1. Convert R into a DFA DR using the algorithm in the

proof of Kleene’s Theorem.

2. Construct a DFA DC∩L(R) for language C ∩ L(R)

from the DFAs DC and DR.

3. Run TM H that decides EDFA on input 〈DC∩L(R)〉.

4. If H accepts, reject. If H rejects, accept.”

6. This is Theorem 4.22. First we show that if A is decidable then it is both Turing-
recognizable and co-Turing recognizable. Suppose that A is decidable. Then it
must also be Turing-recognizable. Also, since A is decidable, there is a TM M

that decides A. Now define another TM M ′ to be the same as M except that we
swap the accept and reject states. Then M ′ decides A, so A is decidable. Hence, A
is also Turing-recognizable, so A is co-Turing recognizable. Thus, we proved that
A is both Turing-recognizable and co-Turing-recognizable.

Now we prove the converse: if A is both Turing-recognizable and co-Turing-
recognizable, then A is decidable. Since A is Turing-recognizable, there is a TM
M with L(M) = A. Since A is co-Turing-recognizable, A is Turing-recognizable,
so there is a TM M ′ with L(M ′) = A. Any string w ∈ Σ∗ is either in A or A but
not both, so either M or M ′ (but not both) must accept w. Now build another
TM D as follows:

D = “On input string w:

2



1. Run M and M ′ alternatively on w step by step.

2. If M accepts w, accept. If M ′ accepts w, reject.

Then D decides A, so A is decidable.

7. This is Theorem 5.1, whose proof is given on slide 5-8. Suppose that HALTTM is
decidable and that it is decided by a TM R. Define the following TM S, which
will decide ATM using R as a subroutine:

S = “On input 〈M,w〉, where M is a TM and w is a string:

1. Run R on input 〈M,w〉.

2. If R rejects, then reject.

3. If R accepts, then run M on input w until it halts.”

4. If M accepts w, accept ; otherwise, reject.”

Note that stage 1 checks if it is safe to run M on w. If not, then M loops on w,
so S rejects 〈M,w〉 6∈ ATM, which is stage 2. If stage 1 determines it is safe to run
M on w, then stage 3 runs M on w, and then stage 4 gives the same output. In
particular, if M accepts w, then S accepts 〈M,w〉; if M rejects w, then S rejects
〈M,w〉.

Thus, we have shown that ATM reduces toHALTTM. But since ATM is undecidable,
we must have that HALTTM is also undecidable.

3


