CS 341, Fall 2015, Face-to-Face Section
Solutions for Midterm 1

1. (a) False. 1* is regular since it has a regular expression, but this language is infinite.

(b) True. By HW 2, problem 3, we know A is regular. Since A and B are regular,
then AU B is regular by Theorem 1.25. Theorem 1.49 then implies (A U B)* is

regular.
(c) False. See HW 6, problem 2(a).

(d) False. For example, A = {0"1"0™ | n > 0} is a subset of B = L((0U 1)*), but A
is non-context-free and B is context-free.

(e) True. Use the pumping lemma with string a”b", where r = max(p, 3) and p is the
pumping length.

(f) True. Since A has a regular expression, A is a regular language by Theorem 1.54.
Then Corollary 2.32 implies A is also context-free, so it has a CFG. Theorem 2.9
then ensures that A has a CFG in Chomsky normal form.

(g) True. See slide 2-111.
(h) True. HW 4, problem 5(a).
(i) True. HW 4, problem 5(c).
(j) True. Suppose A is non-context-free but regular. But then Corollary 2.32 implies
A is context-free, which is a contradiction.
2. (a) (¢eU1)(01)*00(10)*(eU1) U (¢U0)(10)*11(01)*(e U 0)
(b) (aa Ub)a*bb* or (aaa™ U ba*)bb* or ...
(c) As on slide 1-66, an NFA N for A} is as below:
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(d) (Homework 5, problem 3b.) Assume that S35 ¢ V;UV;. Then a CFG for Ao A, is
G3 = (%,E,Rg,Sé) with ‘/3 = ViU‘/QU{Sg} and Rg = R1UR2U{53 — 5152}.

3. A DFA for C is below:
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4. (a) G = (V,X,R,S) with set of variables V' = {S, Z}, where S is the start variable;
set of terminals ¥ = {a, b, c}; and rules

\

WX |YZ
Wa e
bX | e
cY |e
aZb | e
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(b) There are infinitely many correct PDAs for L. Here is one:

c,e—c a,c—e b,e —e
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The PDA has a nondeterministic branch at ¢;. If the string is c'a’b* with i = j,
then the PDA takes the branch from q; to ¢o. If the string is cfa’b* with j = k,
then the PDA takes the branch from ¢; to g¢s.

Yet another approach uses the algorithm from Lemma 2.21 to convert the CFG
in part (a) into a PDA.
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Note that

e The path ¢o — g4 — @2 corresponds to the rule § — W X.
The path ¢o — g5 — @2 corresponds to the rule S — Y Z.

The path ¢o — ¢s — q7 — @2 corresponds to the rule W — cWa.

The path ¢o — gs — ¢o corresponds to the rule X — b.X.

The path ¢o — g9 — ¢o corresponds to the rule Y — ¢Y.
The path ¢ — q10 — ¢11 — @2 corresponds to the rule Z — aZb.

5. Language A is nonregular. We prove this by contradiction. Suppose that A is a
regular language. Let p be the “pumping length” of the Pumping Lemma. Consider
the string s = c?a”. Note that s € A because the numbers of ¢’s and a’s are equal, and
|s| = 2p > p, so the Pumping Lemma will hold. Thus, there exists strings z, y, and z
such that s = zyz and

(a) zy'z € A for each i > 0,
(b) [y[ >0,
() |zyl <p.

Since the first p symbols of s are all ¢’s, the third property implies that x and y consist
only of ¢’s. So z will be the rest of the ¢’s, followed by a”. The second property states



that |y| > 0, so y has at least one ¢. More precisely, we can then say that

T = cjforsomejzo,
= (" for some k > 1,

z = c"a® for some m > 0.
Since cPaP? = s = xyz = dFcmaP = JHFT™aP, we must have that
j+k+m=p and k>1.
The first property implies that zy?z = 2z € A, but

ry’z = dFEma?

hRaP & A

since p+ k > p because j + k+m = p and k > 1, so the number of ¢’s in the pumped
string 2?2 doesn’t match the number of a’s, and the number of a’s doesn’t match the
number of b’s (none). Because the pumped string zy?z ¢ A, we have a contradiction.

Therefore, A is a nonregular language.

Note that if you instead chose the string s = c?a?b?, you would not get a contradiction.
This is because pumping up or down leads to the number of ¢’s changing, but the
number of a’s and b’s remain the same and equal. Thus, the pumped string is still in

the language, so there is no contradiction.



