Midterm Exam 1
CS 341: Foundations of Computer Science II - Fall 2015, day section
Prof. Marvin K. Nakayama

Print family (or last) name: \qquad

Print given (or first) name: \qquad

I have read and understand all of the instructions below, and I will obey the University Code on Academic Integrity.

Signature and Date

- This exam has 7 pages in total, numbered 1 to 7 . Make sure your exam has all the pages.
- Note the number written on the upper right-hand corner of the first page. On the sign-up sheet being passed around, sign your name next to this number.
- This exam will be 1 hour and 25 minutes in length.
- This is a closed-book, closed-note exam. Electronic devices (e.g., cellphone, smart watch, calculator) are not allowed.
- For all problems, follow these instructions:

1. Give only your answers in the spaces provided. I will only grade what you put in the answer space, and I will take off points for any scratch work in the answer space. Use the scratchwork area or the backs of the sheets to work out your answers before filling in the answer space.
2. For any proofs, be sure to provide a step-by-step argument, with justifications for every step.

Problem	1	2	3	4	5	Total
Points						

1. [20 points] For each of the following, circle TRUE if the statement is correct. Otherwise, circle FALSE
(a) TRUE FALSE - If A is a regular language, then A is finite.
(b) TRUE FALSE - If A and B are regular languages, then $(\bar{A} \cup B)^{*}$ is regular.
(c) TRUE FALSE - The class of context-free languages is closed under intersection.
(d) TRUE FALSE - If B is a context-free language and $A \subseteq B$, then A is context-free.
(e) TRUE FALSE - The language $\left\{a^{n} b^{n} \mid n \geq 3\right\}$ is non-regular.
(f) TRUE FALSE - If a language A has a regular expression, then A has a CFG in Chomsky normal form.
(g) TRUE FALSE - The class of context-free languages is closed under union.
(h) TRUE FALSE - If a finite number of strings is added to a regular language A, then the resulting language is regular.
(i) TRUE FALSE - If a finite number of strings is added to a nonregular language A, then the resulting language is nonregular.
(j) TRUE FALSE - If A is a non-context-free language, then A is also nonregular.
2. [20 points] Give short answers to each of the following parts. Each answer should be at most a few sentences. Be sure to define any notation that you use.
(a) Let $\Sigma=\{0,1\}$, and let A be the language of strings $w \in \Sigma^{*}$ containing exactly one double symbol. (A string has a double symbol if it contains 00 or 11 as a substring. The string 10010 has exactly one double symbol, but 100010 has two double symbols.) Give a regular expression for A.

Answer: \qquad
(b) Give a regular expression for the language recognized by the NFA below.

Answer: \qquad

(c) Suppose that language A_{1} is recognized by NFA N_{1} below. Note that the transitions are not drawn in N_{1}. Draw a picture of an NFA for A_{1}^{*}.

(d) Suppose that A_{1} is a language defined by a CFG $G_{1}=\left(V_{1}, \Sigma, R_{1}, S_{1}\right)$, and A_{2} is a language defined by a CFG $G_{2}=\left(V_{2}, \Sigma, R_{2}, S_{2}\right)$, where the alphabet Σ is the same for both languages and $V_{1} \cap V_{2}=\emptyset$. Let $A_{3}=A_{1} \circ A_{2}$. Give a CFG G_{3} for A_{3} in terms of G_{1} and G_{2}. You do not have to prove the correctness of your CFG G_{3}, but do not give just an example.
3. [15 points] Let N be the following NFA with $\Sigma=\{a, b\}$, and let $C=L(N)$.

Give a DFA for C.

Scratch-work area
4. [30 points] Consider the language

$$
L=\left\{c^{i} a^{j} b^{k} \mid i, j, k \geq 0, \text { and } i=j \text { or } j=k\right\} .
$$

(a) Give a context-free grammar G for L. Be sure to specify G as a 4 -tuple $G=(V, \Sigma, R, S)$.
(b) Give a PDA for L. You only need to draw the graph.

Scratch-work area

5. [15 points] Recall the pumping lemma for regular languages:

Theorem: If L is a regular language, then there exists a pumping length p where, if $s \in L$ with $|s| \geq p$, then s can be split into three pieces $s=x y z$ such that (i) $x y^{i} z \in L$ for each $i \geq 0$, (ii) $|y| \geq 1$, and (iii) $|x y| \leq p$.
Let $A=\left\{c^{i} a^{j} b^{k} \mid i, j, k \geq 0\right.$, and $i=j$ or $\left.j=k\right\}$. Is A a regular or nonregular language? If A is regular, give a regular expression for A. If A is not regular, prove that it is a nonregular language.

Circle one: Regular Language Nonregular Language

