CS 341, Fall 2015 Solutions for Midterm 2

- 1. (a) False. A TM M may loop on input w.
 - (b) True, by Theorem 4.9.
 - (c) True, by slide 4-38.
 - (d) False, by Theorem 4.8.
 - (e) False, by Theorem 4.11.
 - (f) False, e.g., $\overline{A_{\rm TM}}$ is not Turing-recognizable.
 - (g) False, e.g., if $A = \{00, 11, 111\}$ and $B = \{00, 11\}$, then $\overline{A} \cap B = \emptyset$, but $A \neq B$. For A and B to be equal, we instead need $(\overline{A} \cap B) \cup (A \cap \overline{B}) = \emptyset$.
 - (h) True, by Theorem 4.5.
 - (i) False, by Homework 9, problem 1.
 - (j) False, by Theorems 3.13 and 3.16.
- 2. (a) No, because f(x) = f(y) = 1.
 - (b) No, because nothing in A maps to $3 \in B$.
 - (c) No, because f is not one-to-one nor onto.
 - (d) A language L_1 that is Turing-recognizable has a Turing machine M_1 that may loop forever on a string $w \notin L_1$. A language L_2 that is Turing-decidable has a Turing machine M_2 that always halts.
 - (e) An algorithm is a Turing machine that always halts.
- 3. $q_1010\#1$ $xq_210\#1$ $x1q_20\#1$ $x10q_2\#1$ $x10\#q_41$ $x10\#1q_{reject}$
- 4. (From slides 4-39 and 4-40). Let \mathcal{L} be the collection of languages over an alphabet Σ , and let \mathcal{B} be the set of infinite binary strings, which we know is uncountable (by a diagonalization argument). We will show that there is a correspondence between \mathcal{L} and \mathcal{B} . Let s_1, s_2, s_3, \ldots be an enumeration of the strings in Σ^* , e.g., the enumeration can list the strings in string order. Define mapping $\chi : \mathcal{L} \to \mathcal{B}$ such that for a language $A \in \mathcal{L}$, the *n*th bit of $\chi(A)$ is 1 if and only if the *n*th string $s_n \in A$. We now show χ is a correspondence.
 - To show that χ is one-to-one, suppose that $A_1, A_2 \in \mathcal{L}$ with $A_1 \neq A_2$. Then there is some string s_i such that s_i is in one of the languages but not the other. Then $\chi(A_1)$ and $\chi(A_2)$ differ in the *i*th bit, so χ is one-to-one.
 - To show that χ is onto, consider any infinite binary sequence $b = b_1 b_2 b_3 \ldots \in \mathcal{B}$. Consider the language A that includes all strings s_i for which $b_i = 1$ and does not include any string b_j for which $b_j = 0$. Then $\chi(A) = b$, so χ is onto.

Since χ is one-to-one and onto, it is a correspondence. Thus, \mathcal{L} and \mathcal{B} have the same size, so \mathcal{L} is uncountable because \mathcal{B} is uncountable.

5. This is a slight modification of HW 8, problem 3. Let $\Sigma = \{0, 1\}$, and the language of the decision problem is

 $A = \{ \langle R \rangle \mid R \text{ is a regular expression describing a language over } \Sigma$ containing at least one string w that ends in 010 (i.e., w = x010 for some $x \in \Sigma^*$) }.

Define the language $C = \{ w \in \Sigma^* \mid w \text{ ends in } 010 \}$. Note that C is a regular language with regular expression $(0 \cup 1)^*010$ and is recognized by the following DFA D_C :

Now consider any regular expression R with alphabet Σ . If $L(R) \cap C \neq \emptyset$, then R generates a string ending in 010, so $\langle R \rangle \in A$. Conversely, if $L(R) \cap C = \emptyset$, then R does not generate any string ending in 010, so $\langle R \rangle \notin A$. By Kleene's Theorem, since L(R) is described by regular expression R, the language L(R) must be a regular language. Since C and L(R) are regular languages, $C \cap L(R)$ is regular since the class of regular languages is closed under intersection, as was shown in Chapter 1. Thus, $C \cap L(R)$ has some DFA $D_{C \cap L(R)}$. Theorem 4.4 shows that $E_{\text{DFA}} = \{\langle B \rangle \mid B \text{ is a DFA with } L(B) = \emptyset\}$ is decidable, so there is a Turing machine H that decides E_{DFA} . We apply TM H to $\langle D_{C \cap L(R)} \rangle$ to determine if $C \cap L(R) = \emptyset$. Putting this all together gives us the following Turing machine T to decide A:

- T = "On input $\langle R \rangle$, where R is a regular expression:
 - 1. Convert R into a DFA D_R using the algorithm in the proof of Kleene's Theorem.
 - **2.** Construct a DFA $D_{C \cap L(R)}$ for language $C \cap L(R)$ from the DFAs D_C and D_R .
 - **3.** Run TM *H* that decides E_{DFA} on input $\langle D_{C \cap L(R)} \rangle$.
 - 4. If *H* accepts, *reject*. If *H* rejects, *accept*."
- 6. This is Theorem 5.1, whose proof is given on slide 5-8. Specifically, suppose that $HALT_{\text{TM}}$ is decidable, and let R be a TM that decides $HALT_{\text{TM}}$. Thus, for any $\langle M, w \rangle$, which is an (encoded) pair of a TM M and string w, if $\langle M, w \rangle \in HALT_{\text{TM}}$ is the input to R, then R halts and accepts; if $\langle M, w \rangle \notin HALT_{\text{TM}}$ is the input to R, then R halts and rejects. Now we build a TM S that decides A_{TM} using R as

a subroutine.

- S = "On input $\langle M, w \rangle$, where M is a TM and w a string: **1.** Run TM R on input $\langle M, w \rangle$.
 - **2.** If R rejects, then *reject*.
 - **3.** If R accepts, then run M on input w.
 - 4. If M accepts, then accept. If M rejects, reject."

Note that if M accepts w, then S accepts $\langle M, w \rangle$. If M does rejects w, then S rejects $\langle M, w \rangle$. If M loops on w, then S rejects $\langle M, w \rangle$ in stage 2. Thus, S decides $A_{\rm TM}$, which is impossible because $A_{\rm TM}$ is undecidable. Therefore, $HALT_{\rm TM}$ is also undecidable.