CS 341, Fall 2015

Solutions for Midterm 2

1. (a) False. A TM M may loop on input w.
(b) True, by Theorem 4.9.
(c) True, by slide 4-38.
(d) False, by Theorem 4.8 .
(e) False, by Theorem 4.11.
(f) False, e.g., $\overline{A_{\mathrm{TM}}}$ is not Turing-recognizable.
(g) False, e.g., if $A=\{00,11,111\}$ and $B=\{00,11\}$, then $\bar{A} \cap B=\emptyset$, but $A \neq B$. For A and B to be equal, we instead need $(\bar{A} \cap B) \cup(A \cap \bar{B})=\emptyset$.
(h) True, by Theorem 4.5.
(i) False, by Homework 9, problem 1.
(j) False, by Theorems 3.13 and 3.16.
2. (a) No, because $f(x)=f(y)=1$.
(b) No, because nothing in A maps to $3 \in B$.
(c) No, because f is not one-to-one nor onto.
(d) A language L_{1} that is Turing-recognizable has a Turing machine M_{1} that may loop forever on a string $w \notin L_{1}$. A language L_{2} that is Turing-decidable has a Turing machine M_{2} that always halts.
(e) An algorithm is a Turing machine that always halts.
3. $q_{1} 010 \# 1 \quad x q_{2} 10 \# 1 \quad x 1 q_{2} 0 \# 1 \quad x 10 q_{2} \# 1 \quad x 10 \# q_{4} 1 \quad x 10 \# 1 q_{\text {reject }}$
4. (From slides 4-39 and 4-40). Let \mathcal{L} be the collection of languages over an alphabet Σ, and let \mathcal{B} be the set of infinite binary strings, which we know is uncountable (by a diagonalization argument). We will show that there is a correspondence between \mathcal{L} and \mathcal{B}. Let $s_{1}, s_{2}, s_{3}, \ldots$ be an enumeration of the strings in Σ^{*}, e.g., the enumeration can list the strings in string order. Define mapping $\chi: \mathcal{L} \rightarrow \mathcal{B}$ such that for a language $A \in \mathcal{L}$, the nth bit of $\chi(A)$ is 1 if and only if the nth string $s_{n} \in A$. We now show χ is a correspondence.

- To show that χ is one-to-one, suppose that $A_{1}, A_{2} \in \mathcal{L}$ with $A_{1} \neq A_{2}$. Then there is some string s_{i} such that s_{i} is in one of the languages but not the other. Then $\chi\left(A_{1}\right)$ and $\chi\left(A_{2}\right)$ differ in the i th bit, so χ is one-to-one.
- To show that χ is onto, consider any infinite binary sequence $b=b_{1} b_{2} b_{3} \ldots \in$ \mathcal{B}. Consider the language A that includes all strings s_{i} for which $b_{i}=1$ and does not include any string b_{j} for which $b_{j}=0$. Then $\chi(A)=b$, so χ is onto.

Since χ is one-to-one and onto, it is a correspondence. Thus, \mathcal{L} and \mathcal{B} have the same size, so \mathcal{L} is uncountable because \mathcal{B} is uncountable.
5. This is a slight modification of HW 8, problem 3. Let $\Sigma=\{0,1\}$, and the language of the decision problem is

$$
\begin{aligned}
A=\{\langle R\rangle \mid & R \text { is a regular expression describing a language over } \Sigma \\
& \text { containing at least one string } w \text { that ends in } 010 \\
& \text { (i.e., } \left.\left.w=x 010 \text { for some } x \in \Sigma^{*}\right)\right\} .
\end{aligned}
$$

Define the language $C=\left\{w \in \Sigma^{*} \mid w\right.$ ends in 010$\}$. Note that C is a regular language with regular expression $(0 \cup 1)^{*} 010$ and is recognized by the following DFA D_{C} :

Now consider any regular expression R with alphabet Σ. If $L(R) \cap C \neq \emptyset$, then R generates a string ending in 010 , so $\langle R\rangle \in A$. Conversely, if $L(R) \cap C=\emptyset$, then R does not generate any string ending in 010 , so $\langle R\rangle \notin A$. By Kleene’s Theorem, since $L(R)$ is described by regular expression R, the language $L(R)$ must be a regular language. Since C and $L(R)$ are regular languages, $C \cap L(R)$ is regular since the class of regular languages is closed under intersection, as was shown in Chapter 1. Thus, $C \cap L(R)$ has some DFA $D_{C \cap L(R)}$. Theorem 4.4 shows that $E_{\mathrm{DFA}}=\{\langle B\rangle \mid B$ is a DFA with $L(B)=\emptyset\}$ is decidable, so there is a Turing machine H that decides $E_{\text {DFA }}$. We apply TM H to $\left\langle D_{C \cap L(R)}\right\rangle$ to determine if $C \cap L(R)=\emptyset$. Putting this all together gives us the following Turing machine T to decide A :
$T=$ "On input $\langle R\rangle$, where R is a regular expression:

1. Convert R into a DFA D_{R} using the algorithm in the proof of Kleene's Theorem.
2. Construct a DFA $D_{C \cap L(R)}$ for language $C \cap L(R)$ from the DFAs D_{C} and D_{R}.
3. Run TM H that decides $E_{\text {DFA }}$ on input $\left\langle D_{C \cap L(R)}\right\rangle$.
4. If H accepts, reject. If H rejects, accept."
5. This is Theorem 5.1, whose proof is given on slide $5-8$. Specifically, suppose that $H A L T_{\mathrm{TM}}$ is decidable, and let R be a TM that decides $H A L T_{\mathrm{TM}}$. Thus, for any $\langle M, w\rangle$, which is an (encoded) pair of a TM M and string w, if $\langle M, w\rangle \in H A L T_{\mathrm{TM}}$ is the input to R, then R halts and accepts; if $\langle M, w\rangle \notin H A L T_{\mathrm{TM}}$ is the input to R, then R halts and rejects. Now we build a TM S that decides $A_{\text {TM }}$ using R as
a subroutine.

$$
\begin{aligned}
& S=\text { "On input }\langle M, w\rangle \text {, where } M \text { is a TM and } w \text { a string: } \\
& \text { 1. Run TM } R \text { on input }\langle M, w\rangle \text {. } \\
& \text { 2. If } R \text { rejects, then reject. } \\
& \text { 3. If } R \text { accepts, then run } M \text { on input } w \text {. } \\
& \text { 4. If } M \text { accepts, then accept. If } M \text { rejects, reject." }
\end{aligned}
$$

Note that if M accepts w, then S accepts $\langle M, w\rangle$. If M does rejects w, then S rejects $\langle M, w\rangle$. If M loops on w, then S rejects $\langle M, w\rangle$ in stage 2 . Thus, S decides A_{TM}, which is impossible because A_{TM} is undecidable. Therefore, $H A L T_{\mathrm{TM}}$ is also undecidable.

