CS 341, Spring 2015

Solutions for Midterm, eLearning Section

1. (a) True. Since A has a PDA, it is context-free by Theorem 2.20, so the statement then follows from Theorem 2.9.
(b) True. The language \emptyset is finite, so slide 1-95 shows that it is regular. Corollary 2.32 then implies that \emptyset is also context-free.
(c) False. For example, let A have regular expression $(0 \cup 1)^{*}$, so it is an infinite language. Since A has a regular expression, it is a regular language by Theorem 1.54.
(d) True. By Corollary 1.40, A is regular since it has an NFA. Corollary 2.32 then implies that A is context-free, so it has a PDA by Theorem 2.20.
(e) False. The language $A=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is nonregular, which we can show by the pumping lemma for regular languages (to get a contradiction, choose the string $s=a^{p} b^{p} c^{p} \in A$, so $x=a^{j}, y=a^{k}$ and $z=a^{l} b^{p} c^{p}$, with $j+k+l=p$ and $k \geq 1$). But slide $2-96$ shows that A is also non-context-free.
(f) False. Let $A=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ and B have regular expression $(0 \cup 1)^{*}$. Then B is regular since it has a regular expression (Theorem 1.54). Also, note that $A \subseteq B$, but A is nonregular, as shown on slide 1-105.
(g) False. Homework 6, problem 2b.
(h) True. Since A is finite, it is regular by slide 1-95. Thus, \bar{A} is regular by Homework 2, problem 3. Also, B is regular since it has a regular expression (Theorem 1.54), so $\bar{A} \cap B$ is regular by Homework 2, problem 5. Hence, Corollary 2.32 implies $\bar{A} \cap B$ is context-free.
(i) False. The derivation $S \Rightarrow 0$ generates the string 0 , which is not in the language, so the CFG cannot be correct.
(j) True. Homework 5, problem 3b.
2. (a) $a^{*} b\left(a \cup b a^{*} b\right)^{*}$
(b) • $S \rightarrow X S$ is not in Chomsky normal form since starting variable cannot be on right side of rule.

- $X \rightarrow Y a$ is improper since a rule cannot have a mix of terminals and variables on the right.
- $Y \rightarrow \varepsilon$ is improper since ε cannot be on right side of rule unless S is on left side.
- $Y \rightarrow Y Y X Y$ is improper since a rule cannot have more than two variables on the right side.
(c) slide 1-63.
(d) Homework 5, problem 3c.

3. $\begin{array}{llllllll} \\ 1\end{array} \mathbb{\#} 1 \quad x q_{3} \# 1 \quad x \# q_{5} 1 \quad x q_{6} \# x \quad q_{7} x \# x \quad x q_{1} \# x \quad x \# q_{8} x \quad x \# x q_{8}$ $x \# x \sqcup q_{\text {accept }}$
4. Here's a DFA for C.

5. (a) $G=(V, \Sigma, R, S)$ with set of variables $V=\{S, U, W, X, Y\}$, where S is the start variable; set of terminals $\Sigma=\{a, b, c\}$; and rules

$$
\begin{aligned}
S & \rightarrow X Y \mid U W \\
X & \rightarrow a X b \mid \varepsilon \\
Y & \rightarrow c Y \mid \varepsilon \\
U & \rightarrow a U \mid \varepsilon \\
W & \rightarrow b W c \mid \varepsilon
\end{aligned}
$$

The rule $S \rightarrow X Y$ eventually yields strings $a^{i} b^{j} c^{k}$ with $i=j$, and the rule $S \rightarrow U W$ eventually yields strings $a^{i} b^{j} c^{k}$ with $j=k$.
(b) PDA

The PDA has a nondeterministic branch at q_{1}. If the string is $a^{i} b^{j} c^{k}$ with $i=j$, then the PDA takes the branch from q_{1} to q_{2}. If the string is $a^{i} b^{j} c^{k}$ with $j=k$, then the PDA takes the branch from q_{1} to q_{5}.
There are other correct PDAs that recognize A.
6. This is Homework 2, problem 4. We prove this by contradiction. Suppose that \bar{M} is not a minimal DFA for \bar{A}. Then there exists another DFA D for \bar{A} such that D has
strictly fewer states than \bar{M}. Now create another DFA D^{\prime} by swapping the accepting and non-accepting states of D. Then D^{\prime} recognizes the complement of \bar{A}. But the complement of \bar{A} is just A, so D^{\prime} recognizes A. Note that D^{\prime} has the same number of states as D, and \bar{M} has the same number of states as M. Thus, since we assumed that D has strictly fewer states than \bar{M}, then D^{\prime} has strictly fewer states than M. But since D^{\prime} recognizes A, this contradicts our assumption that M is a minimal DFA for A. Therefore, \bar{M} is a minimal DFA for \bar{A}.
7. Suppose that A is a regular language. Let p be the pumping length, and consider the string $s=a^{p} b^{p}$. Note that $s \in A$ since the numbers of a 's and b 's are equal. Also, $|s|=2 p \geq p$, so the pumping lemma implies we can write $s=x y z$ with $x y^{i} z \in A$ for all $i \geq 0,|y|>0$, and $|x y| \leq p$. Now, $|x y| \leq p$ implies that x and y have only a's (together up to p in total) and z has the rest of the a 's at the beginning, followed by b^{p}. Hence, we can write $x=a^{j}$ for some $j \geq 0, y=a^{k}$ for some $k \geq 0$, and $z=a^{\ell} b^{p}$, where $j+k+\ell=p$ since $x y z=s=a^{p} b^{p}$. Also, $|y|>0$ implies $k>0$. Now consider the string xyyz $=a^{j} a^{k} a^{k} a^{\ell} b^{p}=a^{p+k} b^{p}$ since $j+k+\ell=p$. Since $k>0$, the number of a 's and b 's are not equal. Also, the number of c 's, which is 0 , does not equal the number of b 's, so $x y y z \notin A$. This contradicts (i), so A is not a regular language.

