CS 341, Spring 2015 Solutions for Midterm, eLearning Section

- 1. (a) True. Since A has a PDA, it is context-free by Theorem 2.20, so the statement then follows from Theorem 2.9.
 - (b) True. The language \emptyset is finite, so slide 1-95 shows that it is regular. Corollary 2.32 then implies that \emptyset is also context-free.
 - (c) False. For example, let A have regular expression $(0 \cup 1)^*$, so it is an infinite language. Since A has a regular expression, it is a regular language by Theorem 1.54.
 - (d) True. By Corollary 1.40, A is regular since it has an NFA. Corollary 2.32 then implies that A is context-free, so it has a PDA by Theorem 2.20.
 - (e) False. The language $A = \{a^n b^n c^n \mid n \ge 0\}$ is nonregular, which we can show by the pumping lemma for regular languages (to get a contradiction, choose the string $s = a^p b^p c^p \in A$, so $x = a^j$, $y = a^k$ and $z = a^l b^p c^p$, with j + k + l = p and $k \ge 1$). But slide 2-96 shows that A is also non-context-free.
 - (f) False. Let $A = \{ 0^n 1^n | n \ge 0 \}$ and B have regular expression $(0 \cup 1)^*$. Then B is regular since it has a regular expression (Theorem 1.54). Also, note that $A \subseteq B$, but A is nonregular, as shown on slide 1-105.
 - (g) False. Homework 6, problem 2b.
 - (h) True. Since A is finite, it is regular by slide 1-95. Thus, A is regular by Homework 2, problem 3. Also, B is regular since it has a regular expression (Theorem 1.54), so A ∩ B is regular by Homework 2, problem 5. Hence, Corollary 2.32 implies A ∩ B is context-free.
 - (i) False. The derivation $S \Rightarrow 0$ generates the string 0, which is not in the language, so the CFG cannot be correct.
 - (j) True. Homework 5, problem 3b.
- 2. (a) $a^*b(a \cup ba^*b)^*$
 - (b) $S \to XS$ is not in Chomsky normal form since starting variable cannot be on right side of rule.
 - $X \to Ya$ is improper since a rule cannot have a mix of terminals and variables on the right.
 - $Y \to \varepsilon$ is improper since ε cannot be on right side of rule unless S is on left side.
 - $Y \to YYXY$ is improper since a rule cannot have more than two variables on the right side.
 - (c) slide 1-63.
 - (d) Homework 5, problem 3c.
- 3. $q_1 1 \# 1 \quad x q_3 \# 1 \quad x \# q_5 1 \quad x q_6 \# x \quad q_7 x \# x \quad x q_1 \# x \quad x \# q_8 x \quad x \# x x \ x$

4. Here's a DFA for C.

5. (a) $G = (V, \Sigma, R, S)$ with set of variables $V = \{S, U, W, X, Y\}$, where S is the start variable; set of terminals $\Sigma = \{a, b, c\}$; and rules

The rule $S \to XY$ eventually yields strings $a^i b^j c^k$ with i = j, and the rule $S \to UW$ eventually yields strings $a^i b^j c^k$ with j = k.

(b) PDA

The PDA has a nondeterministic branch at q_1 . If the string is $a^i b^j c^k$ with i = j, then the PDA takes the branch from q_1 to q_2 . If the string is $a^i b^j c^k$ with j = k, then the PDA takes the branch from q_1 to q_5 .

- There are other correct PDAs that recognize A.
- 6. This is Homework 2, problem 4. We prove this by contradiction. Suppose that \overline{M} is not a minimal DFA for \overline{A} . Then there exists another DFA D for \overline{A} such that D has

strictly fewer states than \overline{M} . Now create another DFA D' by swapping the accepting and non-accepting states of D. Then D' recognizes the complement of \overline{A} . But the complement of \overline{A} is just A, so D' recognizes A. Note that D' has the same number of states as D, and \overline{M} has the same number of states as M. Thus, since we assumed that D has strictly fewer states than \overline{M} , then D' has strictly fewer states than M. But since D' recognizes A, this contradicts our assumption that M is a minimal DFA for A. Therefore, \overline{M} is a minimal DFA for \overline{A} .

7. Suppose that A is a regular language. Let p be the pumping length, and consider the string $s = a^p b^p$. Note that $s \in A$ since the numbers of a's and b's are equal. Also, $|s| = 2p \ge p$, so the pumping lemma implies we can write s = xyz with $xy^i z \in A$ for all $i \ge 0$, |y| > 0, and $|xy| \le p$. Now, $|xy| \le p$ implies that x and y have only a's (together up to p in total) and z has the rest of the a's at the beginning, followed by b^p . Hence, we can write $x = a^j$ for some $j \ge 0$, $y = a^k$ for some $k \ge 0$, and $z = a^\ell b^p$, where $j + k + \ell = p$ since $xyz = s = a^p b^p$. Also, |y| > 0 implies k > 0. Now consider the string $xyyz = a^j a^k a^k a^\ell b^p = a^{p+k} b^p$ since $j + k + \ell = p$. Since k > 0, the number of a's are not equal. Also, the number of c's, which is 0, does not equal the number of b's, so $xyyz \notin A$. This contradicts (i), so A is not a regular language.