CS 341, Fall 2016 Solutions for Midterm, eLearning Section

- 1. (a) True. Suppose A is non-context-free but regular. But then Corollary 2.32 implies A is context-free, which is a contradiction.
 - (b) False. The language a^* is regular but infinite.
 - (c) False. The TM M can also loop on w.
 - (d) False. $\{a^n b^n c^n \mid n \ge 0\}$ is non-regular, but not context-free.
 - (e) False. HW 6, problem 2(a).
 - (f) True. Kleene's Theorem ensures A^* is regular, and we know \overline{B} is regular by HW 2, problem 3. Thus, $A^* \cap \overline{B}$ is regular by HW 2, problem 5.
 - (g) True. Corollary 2.32 implies A is context-free. Thus, A has a PDA by Theorem 2.20.
 - (h) False. For example, $A = \emptyset$ is a subset of $B = \{0^n 1^n \mid n \ge 0\}$, but A is regular and B is non-regular.
 - (i) False. Theorem 1.39.
 - (j) True. By Theorem 2.9. The fact that A is non-regular is irrelevant.
- 2. (a) $b^*a(b \cup ab^*a)^*$
 - (b) $X \to Ya$ is improper since a rule cannot have a mix of terminals and variables on the right.
 - $Y \to XS$ is not in Chomsky normal form since starting variable cannot be on right side of rule.
 - $Y \to \varepsilon$ is improper since ε cannot be on right side of rule unless S is on left side.
 - $Y \to YYXY$ is improper since a rule cannot have more than two variables on the right side.
 - (c) A DFA $M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3)$ for $A_1 \cap A_2$ has the set of states as $Q_3 = Q_1 \times Q_2$, alphabet Σ , start state $q_3 = (q_1, q_2) \in Q_3$, the set of accepting states as $F_3 = F_1 \times F_2$, and transition function $\delta_3((x, y), \ell) = (\delta_1(x, \ell), \delta_2(y, \ell))$ for $x \in Q_1$, $y \in Q_2$, and $\ell \in \Sigma$.
 - (d) The is Homework 5, problem 3c. Given a CFG $G_1 = (V_1, \Sigma, R_1, S_1)$ for a language A, a CFG $G_2 = (V_2, \Sigma, R_2, S_2)$ for A^* has $V_2 = V_1 \cup \{S_2\}$, where $S_2 \notin V_1$ is the new start variable, the same alphabet Σ as G_1 , and rules $R_2 = R_1 \cup \{S_2 \to S_1S_2, S_2 \to \varepsilon\}$.
- 3. $q_101\#0$ $xq_21\#0$ $x1q_2\#0$ $x1\#q_40$ $x1q_6\#x$ $xq_71\#x$ $q_7x1\#x$ $xq_11\#x$ $xxq_3\#x$ $xx\#q_5x$ $xx\#xq_5 \sqcup$ $xx\#x \sqcup q_{\text{reject}} \sqcup$

4. Here's a DFA for C.

5. (a) $G = (V, \Sigma, R, S)$ with set of variables $V = \{S, X\}$, where S is the start variable; set of terminals $\Sigma = \{a, b, c\}$; and rules

$$\begin{array}{rcl} S & \rightarrow & aSc \mid X \\ X & \rightarrow & bXc \mid \varepsilon \end{array}$$

The rule $S \to aSc$ eventually yields $a^i X c^i$ for $i \ge 0$. Then applying $X \to bXc j$ times and then $X \to \varepsilon$ leads to $a^i b^j c^j c^i = a^i b^j c^{i+j}$.

(b) PDA

$$\xrightarrow{a, \varepsilon \to c} b, \varepsilon \to c \qquad c, c \to \varepsilon$$

$$\xrightarrow{q_1 \varepsilon, \varepsilon \to \$} \overbrace{q_2 \varepsilon, \varepsilon \to \varepsilon} c, \varepsilon \to \varepsilon \qquad q_3 \varepsilon, \varepsilon \to \varepsilon \qquad q_4 \varepsilon, \$ \to \varepsilon$$

The PDA first reads each a, and pushes a c on the stack for each a. Then the PDA reads each b, and pushes a c on the stack for each b. Then the PDA reads each c, popping the stack each time. The last transition from q_4 to q_5 makes sure the number of c's equals the sum of the a's and b's.

There are other correct PDAs that recognize A.

- 6. This is Homework 3, problem 2.
 - (a) The NFA M below recognizes the language $C = \{ w \in \Sigma^* \mid w \text{ ends with } 00 \}$, where $\Sigma = \{0, 1\}$.

Swapping the accept and non-accept states of M gives the following NFA M':

Note that M' accepts the string $100 \notin \overline{C} = \{ w \mid w \text{ does not end with } 00 \}$, so M' does not recognize the language \overline{C} .

- (b) The class of languages recognized by NFAs is closed under complement, which we can prove as follows. Suppose that C is a language recognized by some NFA M, i.e., C = L(M). Since every NFA has an equivalent DFA (Theorem 1.19), there is a DFA D such that L(D) = L(M) = C. By problem 3 on Homework 2, we then know there is another DFA \overline{D} that recognizes the language $\overline{L(D)}$. Since every DFA is also an NFA, this then shows that there is an NFA, in particular \overline{D} , that recognizes the language $\overline{C} = \overline{L(D)}$. Thus, the class of languages recognized by NFAs is closed under complement.
- 7. The language A is nonregular. To prove this, suppose that A is a regular language. Let p be the pumping length, and consider the string $s = a^p c^p$. Note that $s \in A$ since the number of c's equals the sum of the a's and b's. Also, $|s| = 2p \ge p$, so the pumping lemma implies we can write s = xyz with $xy^i z \in A$ for all $i \ge 0$, |y| > 0, and $|xy| \le p$. Now, $|xy| \le p$ implies that x and y have only a's (together up to p in total) and z has the rest of the a's at the beginning, followed by c^p . Hence, we can write $x = a^j$ for some $j \ge 0$, $y = a^k$ for some $k \ge 0$, and $z = a^\ell c^p$, where $j + k + \ell = p$ since $xyz = s = a^p c^p$. Also, |y| > 0 implies k > 0. Now consider the string $xyyz = a^j a^k a^k a^\ell c^p = a^{p+k} c^p$ since $j + k + \ell = p$. Since k > 0, the number of a's plus b's is p + k, which does not equal the number of c's, which is p. This contradicts (i), so A is not a regular language.