CS 341, Fall 2016

Solutions for Midterm, eLearning Section

1. (a) True. Suppose A is non-context-free but regular. But then Corollary 2.32 implies A is context-free, which is a contradiction.
(b) False. The language a^{*} is regular but infinite.
(c) False. The TM M can also loop on w.
(d) False. $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is non-regular, but not context-free.
(e) False. HW 6, problem 2(a).
(f) True. Kleene's Theorem ensures A^{*} is regular, and we know \bar{B} is regular by HW 2, problem 3. Thus, $A^{*} \cap \bar{B}$ is regular by HW 2 , problem 5 .
(g) True. Corollary 2.32 implies A is context-free. Thus, A has a PDA by Theorem 2.20 .
(h) False. For example, $A=\emptyset$ is a subset of $B=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$, but A is regular and B is non-regular.
(i) False. Theorem 1.39.
(j) True. By Theorem 2.9. The fact that A is non-regular is irrelevant.
2. (a) $b^{*} a\left(b \cup a b^{*} a\right)^{*}$
(b) - $X \rightarrow Y a$ is improper since a rule cannot have a mix of terminals and variables on the right.

- $Y \rightarrow X S$ is not in Chomsky normal form since starting variable cannot be on right side of rule.
- $Y \rightarrow \varepsilon$ is improper since ε cannot be on right side of rule unless S is on left side.
- $Y \rightarrow Y Y X Y$ is improper since a rule cannot have more than two variables on the right side.
(c) A DFA $M_{3}=\left(Q_{3}, \Sigma, \delta_{3}, q_{3}, F_{3}\right)$ for $A_{1} \cap A_{2}$ has the set of states as $Q_{3}=Q_{1} \times Q_{2}$, alphabet Σ, start state $q_{3}=\left(q_{1}, q_{2}\right) \in Q_{3}$, the set of accepting states as $F_{3}=$ $F_{1} \times F_{2}$, and transition function $\delta_{3}((x, y), \ell)=\left(\delta_{1}(x, \ell), \delta_{2}(y, \ell)\right)$ for $x \in Q_{1}$, $y \in Q_{2}$, and $\ell \in \Sigma$.
(d) The is Homework 5, problem 3c. Given a CFG $G_{1}=\left(V_{1}, \Sigma, R_{1}, S_{1}\right)$ for a language A, a CFG $G_{2}=\left(V_{2}, \Sigma, R_{2}, S_{2}\right)$ for A^{*} has $V_{2}=V_{1} \cup\left\{S_{2}\right\}$, where $S_{2} \notin V_{1}$ is the new start variable, the same alphabet Σ as G_{1}, and rules $R_{2}=R_{1} \cup\left\{S_{2} \rightarrow S_{1} S_{2}, S_{2} \rightarrow\right.$ $\varepsilon\}$.

3. $q_{1} 01 \# 0 \quad x q_{2} 1 \# 0 \quad x 1 q_{2} \# 0 \quad x 1 \# q_{4} 0 \quad x 1 q_{6} \# x \quad x q_{7} 1 \# x \quad q_{7} x 1 \# x \quad x q_{1} 1 \# x$ $x x q_{3} \# x \quad x x \# q_{5} x \quad x x \# x q_{5} \sqcup \quad x x \# x \sqcup q_{\text {reject }} \sqcup$
4. Here's a DFA for C.

5. (a) $G=(V, \Sigma, R, S)$ with set of variables $V=\{S, X\}$, where S is the start variable; set of terminals $\Sigma=\{a, b, c\}$; and rules

$$
\begin{aligned}
S & \rightarrow a S c \mid X \\
X & \rightarrow b X c \mid \varepsilon
\end{aligned}
$$

The rule $S \rightarrow a S c$ eventually yields $a^{i} X c^{i}$ for $i \geq 0$. Then applying $X \rightarrow b X c j$ times and then $X \rightarrow \varepsilon$ leads to $a^{i} b^{j} c^{j} c^{i}=a^{i} b^{j} c^{i+j}$.
(b) PDA

The PDA first reads each a, and pushes a c on the stack for each a. Then the PDA reads each b, and pushes a c on the stack for each b. Then the PDA reads each c, popping the stack each time. The last transition from q_{4} to q_{5} makes sure the number of c 's equals the sum of the a 's and b 's.
There are other correct PDAs that recognize A.
6. This is Homework 3, problem 2.
(a) The NFA M below recognizes the language $C=\left\{w \in \Sigma^{*} \mid w\right.$ ends with 00$\}$, where $\Sigma=\{0,1\}$.

Swapping the accept and non-accept states of M gives the following NFA M^{\prime} :

Note that M^{\prime} accepts the string $100 \notin \bar{C}=\{w \mid w$ does not end with 00$\}$, so M^{\prime} does not recognize the language \bar{C}.
(b) The class of languages recognized by NFAs is closed under complement, which we can prove as follows. Suppose that C is a language recognized by some NFA M, i.e., $C=L(M)$. Since every NFA has an equivalent DFA (Theorem 1.19), there is a DFA D such that $L(D)=L(M)=C$. By problem 3 on Homework 2, we then know there is another DFA \bar{D} that recognizes the language $\overline{L(D)}$. Since every DFA is also an NFA, this then shows that there is an NFA, in particular \bar{D}, that recognizes the language $\bar{C}=\overline{L(D)}$. Thus, the class of languages recognized by NFAs is closed under complement.
7. The language A is nonregular. To prove this, suppose that A is a regular language. Let p be the pumping length, and consider the string $s=a^{p} c^{p}$. Note that $s \in A$ since the number of c 's equals the sum of the a 's and b 's. Also, $|s|=2 p \geq p$, so the pumping lemma implies we can write $s=x y z$ with $x y^{i} z \in A$ for all $i \geq 0,|y|>0$, and $|x y| \leq p$. Now, $|x y| \leq p$ implies that x and y have only a 's (together up to p in total) and z has the rest of the a 's at the beginning, followed by c^{p}. Hence, we can write $x=a^{j}$ for some $j \geq 0, y=a^{k}$ for some $k \geq 0$, and $z=a^{\ell} c^{p}$, where $j+k+\ell=p$ since $x y z=s=a^{p} c^{p}$. Also, $|y|>0$ implies $k>0$. Now consider the string $x y y z=a^{j} a^{k} a^{k} a^{\ell} c^{p}=a^{p+k} c^{p}$ since $j+k+\ell=p$. Since $k>0$, the number of a 's plus b 's is $p+k$, which does not equal the number of c 's, which is p. This contradicts (i), so A is not a regular language.

