
CS 341, Fall 2016, Face-to-Face Section

Solutions for Midterm 1

1. (a) False. A = {anbn | n ≥ 0} is context-free but not regular.

(b) True. Homework 2, problem 5.

(c) False. 0∗1∗ generate the string 001 6∈ A, so the regular expression is not correct.
In fact, A is nonregular, so it can’t have a regular expression.

(d) False. If A has an NFA, then Corollary 1.40 implies that A is regular.

(e) True. Corollary 2.32.

(f) True, by Lemma 2.27 and Theorem 2.9.

(g) False. The transition function of an NFA is δ : Q× Σε → P(Q).

(h) False. Let A = { anbn | n ≥ 0 } and B = (a ∪ b)∗. Then A ⊆ B, A is nonregular,
and B is regular.

(i) False. Let A = ∅ and B = { anbn | n ≥ 0 }. Then A ⊆ B, A is regular since it’s
finite, and B is nonregular.

(j) False. The language a∗ is regular but infinite.

2. (a) b∗ab∗∪ b∗aa∗bb∗. Another regular expression is b∗(a∪aa∗b)b∗. There are infinitely
many regular expressions for the language.

(b) G′ = (V ′,Σ, R′, S0), where V ′ = V ∪ {S0}, S0 is the (new) starting variable, Σ is
the same alphabet of terminals as in G, and R′ = R ∪ {S0 → SS0 | ε}.

(c) M3 = (Q3,Σ, δ3, q3, F3), where Q3 = Q1 ×Q2; Σ is the same alphabet as M1 and
M2 have; the transition function δ3 satisfies δ3((q, r), ℓ) = (δ1(q, ℓ), δ2(r, ℓ)) for
(q, r) ∈ Q3 and ℓ ∈ Σ; the starting state q3 = (q1, q2); and F3 = (Q1×F2)∩ (F1 ×
Q2), which also can be written as F1 × F2.

(d) After one step, the CFG is then

S0 → S

S → A1SA | 1SA | A1S | 1S | A0 | 0 | ε

A → 0S0

3. A DFA for C is below:

1

1 2, 3 1, 2, 3, 4

2 1, 4

∅

a

b a

b

b

a

b

a

b

a

a, b

4. (a) G = (V,Σ, R, S) with set of variables V = {S, Z}, where S is the start variable;
set of terminals Σ = {a, b}; and rules

S → bSa | Z

Z → bZ | ε

There are infinitely many other correct CFGs for L.

(b) There are infinitely many correct PDAs for L. The below PDA guesses how many
b’s not to match to the a’s (state q2), then pushes the b’s to match with the a’s
(state q3), matches the a’s with the pushed b’s (state q4), and finally checks that
the stack is empty (transition from q4 to q5).

q1 q2 q3 q4 q5
ε, ε → $

b, ε → ε

ε, ε → ε

b, ε → b

ε, ε → ε

a, b → ε

ε, $ → ε

Below is another PDA for L, which first pushes b’s to match the a’s (state q2),
then guesses how many b’s not to match with a’s (state q3), matches the a’s with
the pushed b’s (state q4), and finally checks that the stack is empty (transition
from q4 to q5).

q1 q2 q3 q4 q5
ε, ε → $

b, ε → b

ε, ε → ε

b, ε → ε

ε, ε → ε

a, b → ε

ε, $ → ε

2

Below is yet another PDA for L. This one pushes all of the b’s onto the stack
(state q2), and matches the a’s with some of the pushed b’s (state q3). This PDA
can accept a string with symbols (b’s and $) still on the stack.

q1 q2 q3 q4
ε, ε → $

b, ε → b

ε, ε → ε

a, b → ε

ε, ε → ε

Yet another approach uses the algorithm from Lemma 2.21 to convert the CFG
in part (a) into a PDA.

q1 r q2

t

u v

q3
ε, ε → $ ε, ε → S

ε, Z → Z ε, ε → bε, S → a

ε, ε → S

ε, ε → b

ε, S → Z

ε, Z → ε

a, a → ε

b, b → ε

ε, $ → ε

5. Language A is nonregular. We prove this by contradiction. Suppose that A is a regular
language. Let p be the “pumping length” of the Pumping Lemma. Consider the string
s = bpap. Note that s ∈ A, and |s| = 2p > p, so the Pumping Lemma will hold. Thus,
there exists strings x, y, and z such that s = xyz and

(a) xyiz ∈ A for each i ≥ 0,

(b) |y| > 0,

(c) |xy| ≤ p.

Since the first p symbols of s are all b’s, the third property implies that x and y consist
only of b’s. So z will be the rest of the b’s, followed by ap. The second property states
that |y| > 0, so y has at least one b. More precisely, we can then say that

x = bj for some j ≥ 0,

3

y = bk for some k ≥ 1,

z = bmap for some m ≥ 0.

Since bpap = s = xyz = bjbkbmap = bj+k+map, we must have that

j + k +m = p and k ≥ 1.

The first property implies that xy0z = xz ∈ A, but

xz = bjbmap

= bj+map 6∈ A

since j+m < p because j+k+m = p and k ≥ 1, so the number of b’s in s is less than
the number of a’s. This is a contradiction. Therefore, A is a nonregular language.

4

