CS 341, Fall 2016, Face-to-Face Section

 Solutions for Midterm 21. (a) False. A TM M may loop on input w.
(b) False. $\overline{A_{\mathrm{TM}}}$ is not Turing-recognizable by Corollary 4.23.
(c) True, because the definition of Turing-decidable is more restrictive than the definition of Turing-recognizable.
(d) True, by Theorem 3.13.
(e) True, by slide 4-25.
(f) False, e.g., if $A=\{00,11\}$ and $B=\{00,11,111\}$, then $A \cap \bar{B}=\emptyset$ but $A \neq B$. For A and B to be equal, we instead need $(\bar{A} \cap B) \cup(A \cap \bar{B})=\emptyset$.
(g) False, because the set $\mathcal{N}=\{1,2,3, \ldots\}$ is countable.
(h) True, because every regular language is context-free by Corollary 2.32, and every context-free language is decidable by Theorem 4.9.
(i) True, by slide 4-38.
(j) False, by Theorem 3.16.
2. (a) No, because $f(x)=f(z)=1$.
(b) Yes, because all elements in $B=\{1,2\}$ are hit: $f(x)=1$ and $f(y)=2$.
(c) No, because f is not one-to-one.
(d) A language L_{1} that is Turing-recognizable has a Turing machine M_{1} that may loop forever on a string $w \notin L_{1}$. A language L_{2} that is Turing-decidable has a Turing machine M_{2} that always halts.
(e) An algorithm is a Turing machine that always halts, i.e., a decider.
3. $q_{1} 0 \# 0 \quad x q_{2} \# 0 \quad x \# q_{4} 0 \quad x q_{6} \# x \quad q_{7} x \# x \quad x q_{1} \# x \quad x \# q_{8} x \quad x \# x q_{8}$ $x \# x \sqcup q_{\text {accept }}$
4. This is HW 9, problem 1. Each element in \mathcal{B} is an infinite sequence $\left(b_{1}, b_{2}, b_{3}, \ldots\right)$, where each $b_{i} \in\{0,1\}$. We prove that \mathcal{B} is uncountable by contradiction. Suppose \mathcal{B} is countable. Then we can define a correspondence f between $\mathcal{N}=\{1,2,3, \ldots\}$ and \mathcal{B}. Specifically, for $n \in \mathcal{N}$, let $f(n)=\left(b_{n 1}, b_{n 2}, b_{n 3}, \ldots\right)$, where $b_{n i}$ is the i th bit in the nth sequence, i.e.,

n	$f(n)$
1	$\left(b_{11}, b_{12}, b_{13}, b_{14}, b_{15}, \ldots\right)$
2	$\left(b_{21}, b_{22}, b_{23}, b_{24}, b_{25}, \ldots\right)$
3	$\left(b_{31}, b_{32}, b_{33}, b_{34}, b_{35}, \ldots\right)$
4	$\left(b_{41}, b_{42}, b_{43}, b_{44}, b_{45}, \ldots\right)$
\vdots	\vdots

Now define an infinite binary sequence $c=\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, \ldots\right) \in \mathcal{B}$, where $c_{i}=1-b_{i i}$ for each $i \in \mathcal{N}$. In other words, the i th bit in c is the opposite of the i th bit in the i th sequence. For example, if

n	$f(n)$
1	$(0,1,1,0,0, \ldots)$
2	$(1,0,1,0,1, \ldots)$
3	$(1,1,1,1,1, \ldots)$
4	$(1,0,0,1,0, \ldots)$
\vdots	\vdots

then we would define $c=(1,1,0,0, \ldots)$. Thus, for each $n=1,2,3, \ldots$, note that $c \in \mathcal{B}$ differs from the nth sequence in the nth bit, so c does not equal $f(n)$ for any $n \in \mathcal{N}$, which is a contradiction because the enumeration was supposed to contain every infinite binary sequence. Hence, \mathcal{B} is uncountable.
5. This is a slight modification of HW 8 , problem 3. Let $\Sigma=\{0,1\}$, and the language of the decision problem is

$$
\begin{aligned}
A=\{\langle R\rangle \quad \mid & R \text { is a regular expression describing a language over } \Sigma \text { containing } \\
& \text { at least one string } w \text { that has } 010 \text { as a substring }
\end{aligned}
$$ (i.e., $w=x 010 y$ for some x and y) \}.

Define the language $C=\left\{w \in \Sigma^{*} \mid w\right.$ has 010 as a substring $\}$. Note that C is a regular language with regular expression $(0 \cup 1)^{*} 010(0 \cup 1)^{*}$ and is recognized by the following DFA D_{C} :

Now consider any regular expression R with alphabet Σ. If $L(R) \cap C \neq \emptyset$, then R generates a string having 010 as a substring, so $\langle R\rangle \in A$. Conversely, if $L(R) \cap$ $C=\emptyset$, then R does not generate any string having 010 as a substring, so $\langle R\rangle \notin$ A. Because $L(R)$ is described by regular expression R, the language $L(R)$ must be a regular language by Kleene's Theorem. Because C and $L(R)$ are regular languages, $C \cap L(R)$ is regular because the class of regular languages is closed under intersection, as was shown in Chapter 1. Thus, $C \cap L(R)$ has some DFA $D_{C \cap L(R)}$. Theorem 4.4 shows that $E_{\mathrm{DFA}}=\{\langle B\rangle \mid B$ is a DFA with $L(B)=\emptyset\}$ is decidable, so there is a Turing machine H that decides $E_{\text {DFA }}$. We then run TM H on input $\left\langle D_{C \cap L(R)}\right\rangle$ to determine if $C \cap L(R)=\emptyset$. Putting this all together gives us the following Turing machine T to decide A :

$$
T=\text { "On input }\langle R\rangle \text {, where } R \text { is a regular expression: }
$$

1. Convert R into a DFA D_{R} using the algorithm in the proof of Kleene's Theorem.
2. Construct a DFA $D_{C \cap L(R)}$ for language $C \cap L(R)$ from the DFAs D_{C} and D_{R}.
3. Run TM H that decides $E_{\text {DFA }}$ on input $\left\langle D_{C \cap L(R)}\right\rangle$.
4. If H accepts, reject. If H rejects, accept."
5. This is Theorem 4.22. First we show that if A is decidable then it is both Turingrecognizable and co-Turing recognizable. Suppose that A is decidable. Then it must also be Turing-recognizable. Also, because A is decidable, there is a TM M that decides A. Now define another TM M^{\prime} to be the same as M except that we swap the accept and reject states. Then M^{\prime} decides \bar{A}, so \bar{A} is decidable. Hence, \bar{A} is also Turing-recognizable. Thus, we proved that A is both Turing-recognizable and co-Turing-recognizable.
Now we prove the converse: if A is both Turing-recognizable and co-Turingrecognizable, then A is decidable. Because A is Turing-recognizable, there is a TM M with $L(M)=A$. Because A is co-Turing-recognizable, \bar{A} is Turing-recognizable, so there is a TM M^{\prime} with $L\left(M^{\prime}\right)=\bar{A}$. Any string $w \in \Sigma^{*}$ is either in A or \bar{A} but not both, so either M or M^{\prime} (but not both) must accept w. Now build another TM D as follows:
$D=$ "On input string w :
6. Alternate running one step on each of M and M^{\prime}, both on input w.
7. If M accepts w, accept. If M^{\prime} accepts w, reject.

Because exactly one of M or M^{\prime} will accept w, we see that D can't loop. Also, if $w \in A$, then M is the TM that will accept, so D accepts w. If $w \notin A$, then M^{\prime} is the TM that will accept, so D rejects w. Hence, D decides A, so A is decidable.
7. This is Theorem 5.1, whose proof is given on slide $5-8$. Suppose that $H A L T_{\text {TM }}$ is decidable and that it is decided by a TM R. Define the following TM S, which will decide $A_{\text {TM }}$ using R as a subroutine:

$$
S=\text { "On input }\langle M, w\rangle \text {, where } M \text { is a TM and } w \text { is a string: }
$$

1. Run R on input $\langle M, w\rangle$.
2. If R rejects, then reject.
3. If R accepts, then run M on input w until it halts."
4. If M accepts w, accept; otherwise, reject."

Note that stage 1 checks if it is safe to run M on w; i.e., if M doesn't loop on w. If not, then M loops on w, so S rejects $\langle M, w\rangle \notin A_{\mathrm{TM}}$, which is stage 2. If stage 1 determines it is safe to run M on w, then stage 3 runs M on w, and then stage 4 gives the same output. In particular, if M accepts w, then S accepts $\langle M, w\rangle$; if M rejects w, then S rejects $\langle M, w\rangle$.

Thus, we have shown that A_{TM} reduces to $H A L T_{\mathrm{TM}}$. But because A_{TM} is undecidable, we must have that $H A L T_{\mathrm{TM}}$ is also undecidable.

