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CS 341, Fall 2016, Face-to-Face Section
Solutions for Midterm 2

(a) False. A TM M may loop on input w.
(b) False. Aty is not Turing-recognizable by Corollary 4.23.

(c¢) True, because the definition of Turing-decidable is more restrictive than the
definition of Turing-recognizable.

(d) True, by Theorem 3.13.

(e) True, by slide 4-25.

(f) False, e.g., if A= {00,11} and B = {00,11,111}, then ANB = 0 but A # B.
For A and B to be equal, we instead need (AN B)U (AN B) = (.

(g) False, because the set N' = {1,2,3,...} is countable.

(h) True, because every regular language is context-free by Corollary 2.32, and
every context-free language is decidable by Theorem 4.9.

(i) True, by slide 4-38.
(j) False, by Theorem 3.16.

a) No, because f(z) = f(z) = 1.

)
)
(a)
(b) Yes, because all elements in B = {1,2} are hit: f(z) =1 and f(y) = 2.
)
)

(¢) No, because f is not one-to-one.
(d) A language L; that is Turing-recognizable has a Turing machine M; that may

loop forever on a string w & L;. A language Ly that is Turing-decidable has
a Turing machine M, that always halts.

(e) An algorithm is a Turing machine that always halts, i.e., a decider.
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This is HW 9, problem 1. Each element in 5 is an infinite sequence (b, bg, bs, ...),
where each b; € {0,1}. We prove that B is uncountable by contradiction. Suppose
B is countable. Then we can define a correspondence f between N = {1,2,3,...}
and B. Specifically, for n € N, let f(n) = (bu1, bua, bus, . ..), where by; is the ith
bit in the nth sequence, i.e.,

f(n)
(bll> b12a b13a bl4> blSa s
(b2la b22a b23a b24> b25> .
(b317 b327 b337 b347 b357 s
(b417 b427 b437 b447 b457 s
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Now define an infinite binary sequence ¢ = (c1, ¢, ¢3, ¢4, C5, ...) € B, where
c; = 1 — by for each ¢« € N. In other words, the 7th bit in ¢ is the opposite of the
1th bit in the ith sequence. For example, if

n (n)

11(0,1,1,0,0,..)
21(1,0,1,0,1,...)
30(1,1,1,1,1,...)
41(1,0,0,1,0,...)

then we would define ¢ = (1,1,0,0,...). Thus, for each n = 1,2,3,..., note that
¢ € B differs from the nth sequence in the nth bit, so ¢ does not equal f(n) for any
n € N, which is a contradiction because the enumeration was supposed to contain
every infinite binary sequence. Hence, B is uncountable.

. This is a slight modification of HW 8, problem 3. Let ¥ = {0, 1}, and the language
of the decision problem is

A={(R) | Ris aregular expression describing a language over ¥ containing
at least one string w that has 010 as a substring

(i.e., w = 2010y for some z and y) }.

Define the language C' = {w € ¥* | w has 010 as a substring }. Note that C is a
regular language with regular expression (0 U 1)*010(0 U 1)* and is recognized by
the following DFA Dg:
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Now consider any regular expression R with alphabet X. If L(R) N C # (), then
R generates a string having 010 as a substring, so (R) € A. Conversely, if L(R) N
C = (0, then R does not generate any string having 010 as a substring, so (R) ¢
A. Because L(R) is described by regular expression R, the language L(R) must
be a regular language by Kleene’s Theorem. Because C' and L(R) are regular
languages, C' N L(R) is regular because the class of regular languages is closed
under intersection, as was shown in Chapter 1. Thus, C' N L(R) has some DFA
Denrry- Theorem 4.4 shows that Eppy = { (B) | B is a DFA with L(B) =0} is
decidable, so there is a Turing machine H that decides Epgpy. We then run TM H
on input (Denrr)) to determine if C'N L(R) = (). Putting this all together gives
us the following Turing machine T" to decide A:

T = “Oninput (R), where R is a regular expression:
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1. Convert R into a DFA Dy using the algorithm in the
proof of Kleene’s Theorem.

2. Construct a DFA Denpp) for language C'N L(R)
from the DFAs Ds and Dpg.

3. Run TM H that decides Eppa on input (Denr(r))-

4. [If H accepts, reject. If H rejects, accept.”

6. This is Theorem 4.22. First we show that if A is decidable then it is both Turing-
recognizable and co-Turing recognizable. Suppose that A is decidable. Then it
must also be Turing-recognizable. Also, because A is decidable, there is a TM M
that decides A. Now define another TM M’ to be the same as M except that we
swap the accept and reject states. Then M’ decides A, so A is decidable. Hence,
A is also Turing-recognizable. Thus, we proved that A is both Turing-recognizable
and co-Turing-recognizable.

Now we prove the converse: if A is both Turing-recognizable and co-Turing-
recognizable, then A is decidable. Because A is Turing-recognizable, there is a TM
M with L(M) = A. Because A is co-Turing-recognizable, A is Turing-recognizable,

so there is a TM M’ with L(M') = A. Any string w € ¥* is either in A or A but
not both, so either M or M’ (but not both) must accept w. Now build another
TM D as follows:

D = “On input string w:
1. Alternate running one step on each of M and M’ both on input w.

2. If M accepts w, accept. If M’ accepts w, reject.

Because exactly one of M or M’ will accept w, we see that D can’t loop. Also, if
w € A, then M is the TM that will accept, so D accepts w. If w € A, then M’ is
the TM that will accept, so D rejects w. Hence, D decides A, so A is decidable.

7. This is Theorem 5.1, whose proof is given on slide 5-8. Suppose that HALT' 1y is
decidable and that it is decided by a TM R. Define the following TM .S, which
will decide Aty using R as a subroutine:

S = “On input (M, w), where M is a TM and w is a string:
1. Run R on input (M, w).
2. If R rejects, then reject.
3. If R accepts, then run M on input w until it halts.”

4. If M accepts w, accept; otherwise, reject.”

Note that stage 1 checks if it is safe to run M on w; i.e., if M doesn’t loop on w.
If not, then M loops on w, so S rejects (M, w) & Ary, which is stage 2. If stage
1 determines it is safe to run M on w, then stage 3 runs M on w, and then stage
4 gives the same output. In particular, if M accepts w, then S accepts (M, w); if
M rejects w, then S rejects (M, w).



Thus, we have shown that Aty reduces to HALT . But because Aty is unde-
cidable, we must have that HALT 1t is also undecidable.



