
CS 341, Fall 2016, Face-to-Face Section

Solutions for Midterm 2

1. (a) False. A TM M may loop on input w.

(b) False. ATM is not Turing-recognizable by Corollary 4.23.

(c) True, because the definition of Turing-decidable is more restrictive than the
definition of Turing-recognizable.

(d) True, by Theorem 3.13.

(e) True, by slide 4-25.

(f) False, e.g., if A = {00, 11} and B = {00, 11, 111}, then A∩B = ∅ but A 6= B.
For A and B to be equal, we instead need (A ∩B) ∪ (A ∩ B) = ∅.

(g) False, because the set N = {1, 2, 3, . . .} is countable.

(h) True, because every regular language is context-free by Corollary 2.32, and
every context-free language is decidable by Theorem 4.9.

(i) True, by slide 4-38.

(j) False, by Theorem 3.16.

2. (a) No, because f(x) = f(z) = 1.

(b) Yes, because all elements in B = {1, 2} are hit: f(x) = 1 and f(y) = 2.

(c) No, because f is not one-to-one.

(d) A language L1 that is Turing-recognizable has a Turing machine M1 that may
loop forever on a string w 6∈ L1. A language L2 that is Turing-decidable has
a Turing machine M2 that always halts.

(e) An algorithm is a Turing machine that always halts, i.e., a decider.

3. q10#0 xq2#0 x#q40 xq6#x q7x#x xq1#x x#q8x x#xq8
x#xxyqaccept

4. This is HW 9, problem 1. Each element in B is an infinite sequence (b1, b2, b3, . . .),
where each bi ∈ {0, 1}. We prove that B is uncountable by contradiction. Suppose
B is countable. Then we can define a correspondence f between N = {1, 2, 3, . . .}
and B. Specifically, for n ∈ N , let f(n) = (bn1, bn2, bn3, . . .), where bni is the ith
bit in the nth sequence, i.e.,

n f(n)
1 (b11, b12, b13, b14, b15, . . .)
2 (b21, b22, b23, b24, b25, . . .)
3 (b31, b32, b33, b34, b35, . . .)
4 (b41, b42, b43, b44, b45, . . .)
...

...
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Now define an infinite binary sequence c = (c1, c2, c3, c4, c5, . . .) ∈ B, where
ci = 1 − bii for each i ∈ N . In other words, the ith bit in c is the opposite of the
ith bit in the ith sequence. For example, if

n f(n)
1 (0, 1, 1, 0, 0, . . .)
2 (1, 0, 1, 0, 1, . . .)
3 (1, 1, 1, 1, 1, . . .)
4 (1, 0, 0, 1, 0, . . .)
...

...

then we would define c = (1, 1, 0, 0, . . .). Thus, for each n = 1, 2, 3, . . ., note that
c ∈ B differs from the nth sequence in the nth bit, so c does not equal f(n) for any
n ∈ N , which is a contradiction because the enumeration was supposed to contain
every infinite binary sequence. Hence, B is uncountable.

5. This is a slight modification of HW 8, problem 3. Let Σ = {0, 1}, and the language
of the decision problem is

A = { 〈R〉 | R is a regular expression describing a language over Σ containing

at least one string w that has 010 as a substring

(i.e., w = x010y for some x and y) }.

Define the language C = {w ∈ Σ∗ | w has 010 as a substring }. Note that C is a
regular language with regular expression (0 ∪ 1)∗010(0 ∪ 1)∗ and is recognized by
the following DFA DC :
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Now consider any regular expression R with alphabet Σ. If L(R) ∩ C 6= ∅, then
R generates a string having 010 as a substring, so 〈R〉 ∈ A. Conversely, if L(R) ∩
C = ∅, then R does not generate any string having 010 as a substring, so 〈R〉 6∈
A. Because L(R) is described by regular expression R, the language L(R) must
be a regular language by Kleene’s Theorem. Because C and L(R) are regular
languages, C ∩ L(R) is regular because the class of regular languages is closed
under intersection, as was shown in Chapter 1. Thus, C ∩ L(R) has some DFA
DC∩L(R). Theorem 4.4 shows that EDFA = { 〈B〉 | B is a DFA with L(B) = ∅ } is
decidable, so there is a Turing machine H that decides EDFA. We then run TM H

on input 〈DC∩L(R)〉 to determine if C ∩ L(R) = ∅. Putting this all together gives
us the following Turing machine T to decide A:

T = “On input 〈R〉, where R is a regular expression:
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1. Convert R into a DFA DR using the algorithm in the

proof of Kleene’s Theorem.

2. Construct a DFA DC∩L(R) for language C ∩ L(R)

from the DFAs DC and DR.

3. Run TM H that decides EDFA on input 〈DC∩L(R)〉.

4. If H accepts, reject. If H rejects, accept.”

6. This is Theorem 4.22. First we show that if A is decidable then it is both Turing-
recognizable and co-Turing recognizable. Suppose that A is decidable. Then it
must also be Turing-recognizable. Also, because A is decidable, there is a TM M

that decides A. Now define another TM M ′ to be the same as M except that we
swap the accept and reject states. Then M ′ decides A, so A is decidable. Hence,
A is also Turing-recognizable. Thus, we proved that A is both Turing-recognizable
and co-Turing-recognizable.

Now we prove the converse: if A is both Turing-recognizable and co-Turing-
recognizable, then A is decidable. Because A is Turing-recognizable, there is a TM
M with L(M) = A. Because A is co-Turing-recognizable, A is Turing-recognizable,
so there is a TM M ′ with L(M ′) = A. Any string w ∈ Σ∗ is either in A or A but
not both, so either M or M ′ (but not both) must accept w. Now build another
TM D as follows:

D = “On input string w:

1. Alternate running one step on each of M and M ′, both on input w.

2. If M accepts w, accept. If M ′ accepts w, reject.

Because exactly one of M or M ′ will accept w, we see that D can’t loop. Also, if
w ∈ A, then M is the TM that will accept, so D accepts w. If w 6∈ A, then M ′ is
the TM that will accept, so D rejects w. Hence, D decides A, so A is decidable.

7. This is Theorem 5.1, whose proof is given on slide 5-8. Suppose that HALTTM is
decidable and that it is decided by a TM R. Define the following TM S, which
will decide ATM using R as a subroutine:

S = “On input 〈M,w〉, where M is a TM and w is a string:

1. Run R on input 〈M,w〉.

2. If R rejects, then reject.

3. If R accepts, then run M on input w until it halts.”

4. If M accepts w, accept ; otherwise, reject.”

Note that stage 1 checks if it is safe to run M on w; i.e., if M doesn’t loop on w.
If not, then M loops on w, so S rejects 〈M,w〉 6∈ ATM, which is stage 2. If stage
1 determines it is safe to run M on w, then stage 3 runs M on w, and then stage
4 gives the same output. In particular, if M accepts w, then S accepts 〈M,w〉; if
M rejects w, then S rejects 〈M,w〉.
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Thus, we have shown that ATM reduces to HALTTM. But because ATM is unde-
cidable, we must have that HALTTM is also undecidable.
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