
CS 341, Spring 2016

Solutions for Midterm, eLearning Section

1. (a) False. For example, let A = {anbn | n ≥ 0} and B = (a ∪ b)∗. Then A ⊆ B, B is
regular, but A is nonregular.

(b) False. a∗b∗ generates the string abb 6∈ {anbn | n ≥ 0}. In fact, { anbn |n ≥ 0 } is a
nonregular language, so it cannot have a regular expression.

(c) True. By Theorem 2.9. The fact that A is non-regular is irrelevant.

(d) True. Because A ∩ B ⊆ B and B is finite, we must have that A ∩ B is finite.
Thus, A ∩ B is regular by slide 1-95. The fact that A has a PDA is irrelevant.

(e) True. By Theorem 2.20.

(f) False. For example, let A = {abc} and B = {anbncn | n ≥ 0}, so A ⊆ B. Because
A is finite, it is regular by slide 1-95. This implies A is also context-free by
Corollary 2.32. But B is not context-free by slide 2-96.

(g) False. The TM M can also loop on w.

(h) False. A = {anbncn | n ≥ 0} is nonregular and not context-free.

(i) False. The language a∗ is regular but infinite.

(j) True. Suppose A is nonregular and finite. But each finite language is regular by
slide 1-95, which is a contradiction.

2. (a) ε ∪ a ∪ b ∪ (a ∪ b)∗(ab ∪ ba). There are other correct regular expressions.

(b) � X → SY is improper since the start variable S can’t be on the right side.

� X → ε is improper if ε is on the right side, S must be on the left side.

� Y → Xa is improper since the right side has a mix of terminals and variables.

� Y → ab is improper since a rule can’t have more than one terminal on the
right side.

� Y → X is improper since it is a unit rule.

(c) As given on slide 1-63, A1 ◦ A2 has the following NFA N :
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ε

ε

ε
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(d) This is Homework 5, problem 3a. The language A3 = A1 ∪ A2 has a CFG G3 =
(V3,Σ, R3, S3), with V3 = V1∪V2∪{S3} and R3 = R1∪R2∪{S3 → S1, S3 → S2 },
where S3 is the start variable.

3. Below is a DFA for the language L. There are other correct DFAs for L.
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5. (a) CFG G = (V,Σ, R, S), with V = {S,X} and start variable S, Σ = {a, b, c}, and
rules R:

S → aSc | X

X → bX | ε

There are other correct CFGs.

(b) PDA

q1 q2 q3 q4 q5
ε, ε → $

a, ε → a

ε, ε → ε

b, ε → ε

ε, ε → ε

c, a → ε

ε, $ → ε

There are other correct PDAs.
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6. This is HW 6, problem 2b. We will use a proof by contradiction, so we first assume
the opposite of what we want to show; i.e., suppose the following is true:

R1. The class of context-free languages is closed under complementation.

Let A = {anbkcn |n, k ≥ 0} and B = {anbnck |n, k ≥ 0}. In problem 5, we gave a CFG
for A, so A is context-free. A CFG for B has rules

S → XY

X → aXb | ε

Y → cY | ε

so B is also context-free. Then R1 implies A and B are context-free. We know the class
of context-free languages is closed under union, as shown on slide 2-101, so we then must

have that A∪B is context-free. Then again apply R1 to conclude that A ∪B is context-

free. Now DeMorgan’s law states that A ∩ B = A ∪B. But A ∩ B = {anbncn |n ≥ 0}
is not context-free, as shown on slide 2-96. This is a contradiction, so R1 must not be
true.

7. Suppose that A is a regular language. Let p be the pumping length, and consider the
string s = apcp ∈ A. Note that |s| = 2p ≥ p, so the pumping lemma implies we can
write s = xyz with xyiz ∈ A for all i ≥ 0, |y| > 0, and |xy| ≤ p. Now, |xy| ≤ p implies
that x and y have only a’s (together up to p in total) and z has the rest of the a’s at
the beginning, followed by cp. Hence, we can write x = aj for some j ≥ 0, y = ak for
some k ≥ 0, and z = aℓcp, where j + k + ℓ = p since xyz = s = apcp. Also, |y| > 0
implies k > 0. Now consider the string xyyz = ajakakaℓcp = ap+kcp since j+k+ ℓ = p.
Note that xyyz 6∈ A since k > 0 so the number of a’s and c’s are not equal. This
contradicts (i) of the pumping lemma, so A is not a regular language.

3


