CS 341, Spring 2016

Solutions for Midterm, eLearning Section

1. (a) False. For example, let $A=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ and $B=(a \cup b)^{*}$. Then $A \subseteq B, B$ is regular, but A is nonregular.
(b) False. $a^{*} b^{*}$ generates the string $a b b \notin\left\{a^{n} b^{n} \mid n \geq 0\right\}$. In fact, $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is a nonregular language, so it cannot have a regular expression.
(c) True. By Theorem 2.9. The fact that A is non-regular is irrelevant.
(d) True. Because $\bar{A} \cap B \subseteq B$ and B is finite, we must have that $\bar{A} \cap B$ is finite. Thus, $\bar{A} \cap B$ is regular by slide $1-95$. The fact that A has a PDA is irrelevant.
(e) True. By Theorem 2.20.
(f) False. For example, let $A=\{a b c\}$ and $B=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$, so $A \subseteq B$. Because A is finite, it is regular by slide 1-95. This implies A is also context-free by Corollary 2.32. But B is not context-free by slide 2-96.
(g) False. The TM M can also loop on w.
(h) False. $A=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is nonregular and not context-free.
(i) False. The language a^{*} is regular but infinite.
(j) True. Suppose A is nonregular and finite. But each finite language is regular by slide 1-95, which is a contradiction.
2. (a) $\varepsilon \cup a \cup b \cup(a \cup b)^{*}(a b \cup b a)$. There are other correct regular expressions.
(b) • $X \rightarrow S Y$ is improper since the start variable S can't be on the right side.

- $X \rightarrow \varepsilon$ is improper if ε is on the right side, S must be on the left side.
- $Y \rightarrow X a$ is improper since the right side has a mix of terminals and variables.
- $Y \rightarrow a b$ is improper since a rule can't have more than one terminal on the right side.
- $Y \rightarrow X$ is improper since it is a unit rule.
(c) As given on slide 1-63, $A_{1} \circ A_{2}$ has the following NFA N :

(d) This is Homework 5, problem 3a. The language $A_{3}=A_{1} \cup A_{2}$ has a CFG $G_{3}=$ $\left(V_{3}, \Sigma, R_{3}, S_{3}\right)$, with $V_{3}=V_{1} \cup V_{2} \cup\left\{S_{3}\right\}$ and $R_{3}=R_{1} \cup R_{2} \cup\left\{S_{3} \rightarrow S_{1}, S_{3} \rightarrow S_{2}\right\}$, where S_{3} is the start variable.

3. Below is a DFA for the language L. There are other correct DFAs for L.

4. $q_{1} 0 \# 0 \quad x q_{2} \# 0 \quad x \# q_{4} 0 \quad x q_{6} \# x \quad q_{7} x \# x \quad x q_{1} \# x \quad x \# q_{8} x \quad x \# x q_{8}$ $x \# x \sqcup q_{\text {accept }}$
5. (a) CFG $G=(V, \Sigma, R, S)$, with $V=\{S, X\}$ and start variable $S, \Sigma=\{a, b, c\}$, and rules R :

$$
\begin{aligned}
S & \rightarrow a S c \mid X \\
X & \rightarrow b X \mid \varepsilon
\end{aligned}
$$

There are other correct CFGs.
(b) PDA

There are other correct PDAs.
6. This is HW 6, problem 2b. We will use a proof by contradiction, so we first assume the opposite of what we want to show; i.e., suppose the following is true:

R1. The class of context-free languages is closed under complementation.
Let $A=\left\{a^{n} b^{k} c^{n} \mid n, k \geq 0\right\}$ and $B=\left\{a^{n} b^{n} c^{k} \mid n, k \geq 0\right\}$. In problem 5, we gave a CFG for A, so A is context-free. A CFG for B has rules

$$
\begin{aligned}
& S \rightarrow X Y \\
& X \rightarrow a X b \mid \varepsilon \\
& Y \rightarrow c Y \mid \varepsilon
\end{aligned}
$$

so B is also context-free. Then R1 implies \bar{A} and \bar{B} are context-free. We know the class of context-free languages is closed under union, as shown on slide 2-101, so we then must have that $\bar{A} \cup \bar{B}$ is context-free. Then again apply R1 to conclude that $\overline{\bar{A} \cup \bar{B}}$ is contextfree. Now DeMorgan's law states that $A \cap B=\overline{\bar{A} \cup \bar{B}}$. But $A \cap B=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not context-free, as shown on slide 2-96. This is a contradiction, so R1 must not be true.
7. Suppose that A is a regular language. Let p be the pumping length, and consider the string $s=a^{p} c^{p} \in A$. Note that $|s|=2 p \geq p$, so the pumping lemma implies we can write $s=x y z$ with $x y^{i} z \in A$ for all $i \geq 0,|y|>0$, and $|x y| \leq p$. Now, $|x y| \leq p$ implies that x and y have only a 's (together up to p in total) and z has the rest of the a 's at the beginning, followed by c^{p}. Hence, we can write $x=a^{j}$ for some $j \geq 0, y=a^{k}$ for some $k \geq 0$, and $z=a^{\ell} c^{p}$, where $j+k+\ell=p$ since $x y z=s=a^{p} c^{p}$. Also, $|y|>0$ implies $k>0$. Now consider the string $x y y z=a^{j} a^{k} a^{k} a^{\ell} c^{p}=a^{p+k} c^{p}$ since $j+k+\ell=p$. Note that xyyz $\notin A$ since $k>0$ so the number of a 's and c 's are not equal. This contradicts (i) of the pumping lemma, so A is not a regular language.

